Answers
Answered by
1
Step-by-step explanation:
Rationalization
\bf{\frac{1}{{\sqrt{7}} + 2}}
7
+2
1
firstly, change the sign of the denominator , i.e √7 - √2 will become √7 + 2 , so multiply this term both with numerator and denominator.
= \bf{\frac{1({\sqrt{7}} + 2)}{({\sqrt{7}} + 2)({\sqrt{7}} - 2)}}
(
7
+2)(
7
−2)
1(
7
+2)
Multiply the terms , and we know that (a+b)(a-b) = a² - b² , use this identity for denominator!
= \bf{\frac{{\sqrt{7}} - 2}{[{\sqrt{(7)}}^{2} - {(2)}^{2}]}}
[
(7)
2
−(2)
2
]
7
−2
solve it more , square root and square will cancel out!
= \bf{\frac{{\sqrt{7}} + 2}{(7 - 4)}}
(7−4)
7
+2
= \bf{\frac{{\sqrt{7}} +2}{(3)}}
(3)
7
+2
thus , after rationalising we will get :-
\boxed{\frac{{\sqrt{7}} + 2}{3}}
3
7
+2
Similar questions