Answers
Answered by
0
Hey Mate !
Here is your solution :
Given,
=> x = 2 + √3 --------- ( 1 )
Multiplying by 6 and diving by 6,
=> x = [ 6( 2 +√3 ) / 6 ]
=> x = [ ( 12 + 6√3 ) / 6 ]
=> x = [ ( 9 + 3 + 6√3 ) / 6 ]
=> x = [ ( 3 )² + ( √3 )² + 2 × 3 × √3 ] / 6
Using identity :
[ a² + b² + 2ab = ( a + b )² ]
=> x = [ 3 +√3 ]² ÷ 6
=> x = ( 3 + √3 )² ÷ ( √6 )²
Using identity :
=> a^m ÷ b^m = ( a/b )^m
=> x = [ ( 3 + √3 ) / √6 ]²
=> √x = [ ( 3 + √3 ) / √6 ] ------- ( 2 )
Now,
= √x + ( 1/√x )
= [ ( √x )² + 1 ] / √x
= [ x + 1 ] / √x
Plug the value of ( 1 ) and ( 2 ) ,
= [ 2 + √3 + 1 ] / [ ( 3 + √3 ) / √6 ]
= ( 3 + √3 ) ÷ [ ( 3 + √3 ) / √6 ]
= [ ( 3 + √3 ) × √6 ] ÷ ( 3 + √3 )
= √6
=============================
Hope it helps !! ^_^
Here is your solution :
Given,
=> x = 2 + √3 --------- ( 1 )
Multiplying by 6 and diving by 6,
=> x = [ 6( 2 +√3 ) / 6 ]
=> x = [ ( 12 + 6√3 ) / 6 ]
=> x = [ ( 9 + 3 + 6√3 ) / 6 ]
=> x = [ ( 3 )² + ( √3 )² + 2 × 3 × √3 ] / 6
Using identity :
[ a² + b² + 2ab = ( a + b )² ]
=> x = [ 3 +√3 ]² ÷ 6
=> x = ( 3 + √3 )² ÷ ( √6 )²
Using identity :
=> a^m ÷ b^m = ( a/b )^m
=> x = [ ( 3 + √3 ) / √6 ]²
=> √x = [ ( 3 + √3 ) / √6 ] ------- ( 2 )
Now,
= √x + ( 1/√x )
= [ ( √x )² + 1 ] / √x
= [ x + 1 ] / √x
Plug the value of ( 1 ) and ( 2 ) ,
= [ 2 + √3 + 1 ] / [ ( 3 + √3 ) / √6 ]
= ( 3 + √3 ) ÷ [ ( 3 + √3 ) / √6 ]
= [ ( 3 + √3 ) × √6 ] ÷ ( 3 + √3 )
= √6
=============================
Hope it helps !! ^_^
iamshad:
its not the answer firstly cgeck the question
Similar questions