Math, asked by jineshwar2, 1 year ago


(12 \div 25) {}^{2}  \times (15 \div 2) {}^{3}   \div (9 \div 2) {}^{2}

Attachments:

Answers

Answered by DaIncredible
1
Hey friend,
Here is the answer you were looking for:
 {( \frac{12}{25} )}^{2}  \times  {( \frac{15}{2} )}^{3}  \div  {( \frac{9}{2} )}^{2}  \\  \\  =  {( \frac{12}{ 25 } )}^{2}  \times  {( \frac{15}{2} )}^{3}  \times  {( \frac{2}{9} )}^{2}  \\  \\  =  (\frac{ {12}^{2} }{ {25}^{2} } ) \times  (\frac{ {15}^{3} }{ {2}^{3} } )  + ( \frac{ {2}^{2} }{ {9}^{2} } ) \\  \\  =  \frac{ {12}^{2} \times  {15}^{3}  \times  {2}^{2}  }{ {25}^{2}  \times  {2}^{3}  \times  {9}^{2} }  \\  \\  =  \frac{ {3}^{2}  \times  {2}^{2}  \times  {2}^{2} \times  {5}^{3} \times  {3}^{3}  \times  {2}^{2}   }{ {5}^{2} \times  {5}^{2}   \times  {2}^{3} \times  {3}^{2} \times  {3}^{2}   }  \\  \\  using \: the \: identity \\  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}  \\  \\   =  \frac{ {3}^{2 + 3} \times  {2}^{2 + 2 + 2} \times  {5}^{3}   }{ {5}^{2 + 2 } \times  {2}^{3}  \times  {3}^{2 + 2}  }  \\  \\  =  \frac{ {3}^{5}  \times  {2}^{6} \times  {5}^{3}  }{ {5}^{4} \times  {2}^{3}  \times  {3}^{4}  }  \\  \\ using \: the \: identity \\  \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}  \\  \\  =   {3}^{5 - 4}  \times  {2}^{6 - 3}  \times  {5}^{3 - 4}  \\  \\  =  {3}^{1}  \times  {2}^{3}  \times  {5}^{ - 1}  \\  \\  = 3 \times 8 \times  \frac{1}{5}  \\  \\  =  \frac{24}{5}

Hope this helps!!!!

@Mahak24

Thanks...
Similar questions