Math, asked by gavadeparmeshwar05, 1 month ago


132x2−251x+117=0 \:  \: then \:  \: find \: the \: possible \: vaule \: ofx

Answers

Answered by ZaraAntisera
0

Answer:

132x^2a^{251}x+117=0\quad :\quad x=-\sqrt[3]{\frac{39}{44a^{251}}},\:x=\frac{\sqrt[3]{39}}{2\cdot \:2^{\frac{2}{3}}\sqrt[3]{11}a^{\frac{251}{3}}}-i\frac{3^{\frac{5}{6}}\sqrt[3]{13}}{2\cdot \:2^{\frac{2}{3}}\sqrt[3]{11}a^{\frac{251}{3}}},\:

+\ i  \frac{3\frac{5}{6} \sqrt[3]{13} }{2*2\frac{2}3}\sqrt[3]{11} a\frac{251}{3}  } ; a\neq 0

Step-by-step explanation:

132x^2a^{251}x+117=0

\mathrm{Subtract\:}117\mathrm{\:from\:both\:sides}

132x^2a^{251}x+117-117=0-117

132x^2a^{251}x=-117

132a^{251}x^3=-117

\mathrm{Divide\:both\:sides\:by\:}132a^{251};\quad \:a\ne \:0

\frac{132a^{251}x^3}{132a^{251}}=\frac{-117}{132a^{251}};\quad \:a\ne \:0

x^3=-\frac{39}{44a^{251}};\quad \:a\ne \:0

\mathrm{For\:}x^3=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt[3]{f\left(a\right)},\:\sqrt[3]{f\left(a\right)}\frac{-1-\sqrt{3}i}{2},\:\sqrt[3]{f\left(a\right)}\frac{-1+\sqrt{3}i}{2}

x=\sqrt[3]{-\frac{39}{44a^{251}}},\:x=\sqrt[3]{-\frac{39}{44a^{251}}}\frac{-1+\sqrt{3}i}{2},\:x=\sqrt[3]{-\frac{39}{44a^{251}}}\frac{-1-\sqrt{3}i}{2};\quad \:a\ne \:0

x=-\sqrt[3]{\frac{39}{44a^{251}}},\:x=\frac{\sqrt[3]{39}}{2\cdot \:2^{\frac{2}{3}}\sqrt[3]{11}a^{\frac{251}{3}}}-i\frac{3^{\frac{5}{6}}\sqrt[3]{13}}{2\cdot \:2^{\frac{2}{3}}\sqrt[3]{11}a^{\frac{251}{3}}},\\\\\:x=\frac{\sqrt[3]{39}}{2\cdot \:2^{\frac{2}{3}}\sqrt[3]{11}a^{\frac{251}{3}}}+i\frac{3^{\frac{5}{6}}\sqrt[3]{13}}{2\cdot \:2^{\frac{2}{3}}\sqrt[3]{11}a^{\frac{251}{3}}};\quad \:a\neq 0

Similar questions