Math, asked by prasadknv80, 5 months ago


1452.2.446 +  + 526
Answer Type
COS I COS Y​

Answers

Answered by Anonymous
9

Answer:I: cosx+cosy=  

3

1

​  

........1

sinx+siny=  

4

1

​  

........(2)

Squaring and adding (1) and (2), we get

cos  

2

x+cos  

2

y+2cosxcosy+sin  

2

x+sin  

2

y+2sinxsiny=  

9

1

​  

+  

16

1

​  

......(3)

2+2cos(x−y)=  

144

25

​  

 

2+4cos  

2

 

2

x−y

​  

−2=  

144

25

​  

 

cos  

2

 

2

x−y

​  

=  

144×4

25

​  

 

Squaring and subtracting (2) from (1), we get

cos  

2

x+cos  

2

y+2cosxcosy−sin  

2

x−sin  

2

y−2sinxsiny=  

9

1

​  

−  

16

1

​  

 

cos2x+cos2y+2cos(x+y)=  

144

7

​  

 

2cos(x+y)cos(x−y)+2cos(x+y)=  

144

7

​  

 

2cos(x+y)(cos(x−y)+1)=  

144

7

​  

 

2cos(x+y)(2cos  

2

(x−y)/2−1+1)=  

144

7

​  

 

Substituting value of (3)

2cos(x+y)⋅2⋅  

144×4

25

​  

=  

144

7

​  

 

cos(x+y)=  

25

7

​  

 

II: sinx+siny=  

4

1

​  

.........(1)

sinx−siny=  

5

1

​  

..........(2)

Dividing (2) by (1), we get

sinx−siny

sinx+siny

​  

=  

4

5

​  

 

⇒  

2cos(  

2

x+y

​  

)sin(  

2

x−y

​  

)

2sin(  

2

x+y

​  

)cos(  

2

x−y

​  

)

​  

=  

4

5

​  

 

⇒  

cot(  

2

x+y

​  

)

cot(  

2

x−y

​  

)

​  

=  

4

5

​  

 

⇒4cot(  

2

x−y

​  

)=5cot(  

2

x+y

​  

)

Step-by-step explanation:

Answered by Anonymous
0

Answer:

here's ur answer dude

Step-by-step explanation:

cosx+cosy+cosα=0

cosx+cosy=−cosα

[cosC+cosD=2cos(

2

C+D

)cos(

2

C−D

)]

2cos(

2

x+y

)cos(

2

x−y

)=−cosα...(i)

sinx+siny+sinα=0

sinx+siny=−sinα

[sinC+sinD=2sin(

2

C+D

)cos(

2

C−D

)]

hope it helps you

Similar questions