Math, asked by vedanthulsure, 20 days ago


15(x - 4) - 2(x - 9) + 5(x + 6) = 0

Answers

Answered by mahakulkarpooja615
0

Answer:

The value of x is \frac{2}{3}.

Step-by-step explanation:

Given : 15(x-4)-2(x-9)+5(x+6)=0

To find : The value of x.

Solution :

  • The given expression is,

        15(x-4)-2(x-9)+5(x+6)=0

  • We have to find the value of x.
  • To find the value of given algebraic expression, use BODMAS rule.
  • BODMAS Rule states that while solving any algebraic expressions, first solve B-Brackets, O-Order, D-Division, M-Multiplication, A-Addition and S-Subtraction.
  • Now, the expression is,

        15(x-4)-2(x-9)+5(x+6)=0

  • First, solve the brackets, we get

       ∴ 15x-60-2x+18+5x+30=0

  • Add or subtract like terms, we get

               ∴ 18x-12=0

  • Transpose 12 to other side, we get

                     ∴ 18x=12

                      ∴ x=\frac{12}{18}

                      ∴ x=\frac{2}{3}

  • ∴ The value of x is \frac{2}{3}.
Answered by xxblackqueenxx37
23

 \sf \:  ★\:  \:  \:Distribute  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   \\  \\  \sf{\color{#c92786}{15(x-4)}}-2(x-9)+5(x+6)=0  \sf\\ 15−60−2(−9)+5(+6)=0 \:  \:  \:  \:  \:

 \sf \: 15x-60{\color{#c92786}{-2(x-9)}}+5(x+6)=0 \\  \sf 15−60−2+18+5(+6)=0

 \sf \: 15x-60-2x+18+{\color{#c92786}{5(x+6)}}=0 \\  \sf 15−60−2+18+5+30=0

  \sf \: ★\:  \:  \: add \: the \: number \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \sf \:15x{\color{#c92786}{-60}}-2x{\color{#c92786}{18}}+5x+{\color{#c92786}{30}}=0 \\  \sf 15−12−2+5=0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \sf \: ★ \:  \:  \:Combine \:  like \:  terms \:  \:  \:  \:  \:  \:  \:   \\  \\  \sf{\color{#c92786}{15x}}-12{\color{#c92786}{-2x}}+{\color{#c92786}{5x}}=0 \\  \sf18−12=0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \sf \: ★ \:  \:  \:Add 12 \: to \:  both \:  sides \:  of  \: the  \: equation \\  \\  \sf 18−12=0  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \sf 18−12+12=0+12 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \sf \: ★\:  \:  \: Add \:  the \:  numbers \:  \\  \\  \sf \pink{ 18=12 }\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \sf \: ★ \:  \:  \:Divide \:  both  \: sides  \: of  \: the \:   \:  \:  \:  \:  \:  \\  \sf \: equation  \: by  \: the \:  same \:  term \\ \\   \sf\pink{ \frac{18x}{18}  =  \frac{12}{18} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Cancel terms that are in both the numerator and denominator

 \sf \: ★\:  \:  \: Divide  \: the \:  numbers \:  \\  \\  \sf \pink{x =  \frac{2}{3} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \sf \: ans \:  =  >  x =  \frac{2}{3} \\

Similar questions