Math, asked by aaditya1137, 3 months ago


16a {}^{2}  + 4b ^{2}  + 9c ^{2} - 16ab + 12bc - 24ac
pls tell answer tomorrow exam plspls​

Answers

Answered by mathdude500
7

\large\underline{\bold{Given \:Question - }}

 \sf \: Factorise : \: 16a {}^{2} + 4b ^{2} + 9c ^{2} - 16ab + 12bc - 24ac

\large\underline{\bold{Solution-}}

Identity Used :-

 \boxed{ \bf{ {(x + y + z)}^{2} =  {x}^{2} +  {y}^{2} +  {z}^{2} + 2xy + 2yz + 2zx}}

Let's solve the problem now!!

Given that

 \sf \: 16a {}^{2} + 4b ^{2} + 9c ^{2} - 16ab + 12bc - 24ac

 \sf \:  =  {(4a)}^{2}  +  {(2b)}^{2} +  {(3c)}^{2}  - 2(4a)(2b)  +  2(2b)(3c)  -  2(4a)(3c)

 \sf \:  =  {( - 4a)}^{2}  +  {(2b)}^{2} +  {(3c)}^{2}   + 2( - 4a)(2b)  +  2(2b)(3c)   +  2( - 4a)(3c)

 \sf \:  =  {( - 4a + 2b + 3c)}^{2}

 \sf \:  = ( - 4a + 2b + 3c)( - 4a + 2b + 3c)

Additional Information :-

Useful Identities :-

 (1). \: \boxed{ \bf{ {(x + y)}^{2}  =  {x}^{2} + 2xy +  {y}^{2}}}

(2). \:  \boxed{ \bf{ {(x - y)}^{2}   =  {x}^{2}  - 2xy +  {y}^{2}  }}

(3). \:  \boxed{ \bf{ {x}^{2} -  {y}^{2}  = (x + y)(x - y) }}

(4). \:  \boxed{ \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}}

(5). \:  \boxed{ \bf{ {(x + y)}^{3} =  {x}^{3}  -   {y}^{3}  -  3xy(x  -  y)}}

(6). \:  \boxed{ \bf{ {x}^{3} +  {y}^{3} = (x + y)( {x}^{2}   - xy +  {y}^{2}}}

(7). \:  \boxed{ \bf{ {x}^{3}  -   {y}^{3} = (x  -  y)( {x}^{2}    +  xy +  {y}^{2}}}

Similar questions