Math, asked by yashwanthBM1, 1 year ago


 {2}^{2}  - 5 + 2 = 0
In complete square method

Answers

Answered by ALTAF11
2
Hi Mate !!


Here's the solution :-


Given equation :- 2x² - 5x + 2 = 0

• First we divide all the numbers by the coefficient of x² i.e, 2

 \frac{2 {x}^{2} }{2}  -  \frac{5x}{2}  +  \frac{2}{2}  = 0

 {x}^{2}  -  \frac{5x}{2}  + 1 = 0

 {x}^{2}  - 2 \times x \times  \frac{5}{4}  +  { (\frac{5}{4}) }^{2}  -  ( { \frac{5}{4}) }^{2}  + 1 = 0

( {x -  \frac{5}{4}) }^{2}  =  - 1 +  \frac{25}{16}


( {x -  \frac{5}{4} )}^{2}  =  \frac{ - 16 + 25}{16}


( {x -  \frac{5}{4} )}^{2}   =  \frac{9}{16}


x -  \frac{5}{4}  =  \sqrt{ \frac{9}{16} }


x  -  \frac{5}{4}  =   +  - \frac{ 3}{4}


x =  \frac{5}{4}  +  -  \frac{3}{4}
_______________

x =  \frac{5}{4}  +  \frac{3}{4}

x =  \frac{8}{4}

x = 2

_____________


x =  \frac{5}{4}  -  \frac{3}{4}


x =  \frac{2}{4}


x =  \frac{1}{2}


So, the Zeros are :- 2 and 1/2
Similar questions