Math, asked by mehtanshul009, 25 days ago


 {2}^{a}  =  {7}^{ - b}  =  {14}^{c}
the prove that,
1/a=1/b+1/c​

Answers

Answered by yogeshkshirsagar663
0

Answer:

/* There is typing errors in the question . It must be like this*/

2^{a} = 5^{b} = 10^{c} \: (given )2

a

=5

b

=10

c

(given)

\red{ To \:show : \frac{1}{a} + \frac{1}{b} = \frac{1}{c} }Toshow:

a

1

+

b

1

=

c

1

\green{Solution: }Solution:

Let \: 2^{a} = 5^{b} = 10^{c} = kLet2

a

=5

b

=10

c

=k

i) 2^{a} = k \: \implies 2 = k^{\frac{1}{a}} \: --(1)i)2

a

=k⟹2=k

a

1

−−(1)

ii) 5^{b} = k \: \implies 5 = k^{\frac{1}{b}} \: --(2)ii)5

b

=k⟹5=k

b

1

−−(2)

\begin{gathered} i) 10^{c} = k \\ \implies 10 = k^{\frac{1}{c}} \end{gathered}

i)10

c

=k

⟹10=k

c

1

\implies 2 \times 5 = k^{\frac{1}{c}}⟹2×5=k

c

1

\implies k^{\frac{1}{a}} \times k^{\frac{1}{b}}= k^{\frac{1}{c}}⟹k

a

1

×k

b

1

=k

c

1

\implies k^{\frac{1}{a} + \frac{1}{b}} = k^{\frac{1}{c}}⟹k

a

1

+

b

1

=k

c

1

\boxed { \pink { Since, a^{m} \times a^{n} = a^{m+n} }}

Since,a

m

×a

n

=a

m+n

\implies \frac{1}{a} + \frac{1}{b}= \frac{1}{c}⟹

a

1

+

b

1

=

c

1

\boxed { \blue { Since, a^{m} = a^{n} \implies m = n }}

Since,a

m

=a

n

⟹m=n

Hence , provedHence,proved

•••♪

Similar questions