Math, asked by manakajay20, 9 months ago


2  log_{10}(5)  +   log_{10}(8) - \frac{1}{2 log_{10}(4)

Answers

Answered by mysticd
0

 2 log_{10}(5) + log_{10}(8) - \frac{1}{2} log_{10}(4)

 =  log_{10}(5^{2}) + log_{10}(8) - \frac{1}{2} log_{10}(2^{2})

 =  log_{10}(25)+ log_{10}(8) - \frac{1}{2} \times 2 log_{10}(2)

 \boxed {\pink{ n log_{a} x = log_{a} x^{n} }}

 =  log_{10}(25\times 8)- log_{10}(2)

 \boxed {\pink{  log_{a} x+ log_{a} y  = log_{a} (xy) }}

 =  log_{10}\frac{(25\times 8)}{2}

 \boxed {\pink{  log_{a} x- log_{a} y  = log_{a} \Big(\frac{x}{y}\Big) }}

 =  log_{10}(25\times 4)

 =  log_{10}(100)

 =  log_{10}(10^{2})

 =  2log_{10}(10)

 = 2 \times 1

 \boxed {\pink{  log_{a} a = 1 }}

 = 2

Therefore.,

 \red{2 log_{10}(5) + log_{10}(8) - \frac{1}{2} log_{10}(4)} \green {= 2}

•••♪

Similar questions