Answers
Hlo Strong Girl ✨ ur answer is in attachment
we have to find the value 2π - [sin¯¹(4/5) + sin¯¹(5/13) + sin¯¹(16/65) ]
solution : first solve sin¯¹(4/5) + sin¯¹(5/13)
we know, sin¯¹A + sin¯¹B = sin¯¹[A√(1 - B²) + B√(1 - A²)]
so, sin¯¹(4/5) + sin¯¹(5/13) = sin¯¹[4/5√(1 - (5/13)²) + 5/13√(1 - (4/5)²]
= sin¯¹[4/5 × 12/13 + 5/13 × 3/5 ]
= sin¯¹[48/65 + 15/65]
= sin¯¹ (63/65)
let sin¯¹(63/65) = A ⇒sinA = 63/65
so, cosA = √(65² - 63²)/65 = 16/65
⇒A = cos¯¹(16/65)
⇒sin¯¹(63/65) = cos¯¹(16/65)
hence, sin¯¹(4/5) + sin¯¹(5/13) = cos¯¹(16/65)
now 2π - [cos¯¹(16/65) + sin¯¹(16/65)]
we know, sin¯¹x + cos¯¹x = π/2
so, cos¯¹(16/65) + sin¯¹(16/65) = π/2
2π - [cos¯¹(16/65) + sin¯¹(16/65)] = 2π - π/2 = 3π/2
Therefore the value of 2π - [cos¯¹(16/65) + sin¯¹(16/65)] is 3π/2