Math, asked by Anonymous, 1 month ago

2(sin^6 \theta + cos^6 \theta) -3(sin^4 + cos^4 \theta) + 1 = 0

Prove the given, thanks!

Answers

Answered by Swarup1998
4

To prove:

2(sin^{6}\theta+cos^{6}\theta)-3(sin^{4}\theta+cos^{4}\theta)+1=0

Step-by-step explanation:

L.H.S.=2(sin^{6}\theta+cos^{6}\theta)-3(sin^{4}\theta+cos^{4}\theta)+1

=2\{(sin^{2}\theta+cos^{2}\theta)^{3}-3\:sin^{2}\theta\:cos^{2}\theta\}-3\{(sin^{2}\theta+cos^{2}\theta)^{2}-2\:sin^{2}\theta\:cos^{2}\theta\}+1

  • since a^{3}+b^{3}=(a+b)^{3}-3ab(a+b)
  • and a^{2}+b^{2}=(a+b)^{2}-2ab

=2(1-3\:sin^{2}\theta\:cos^{2}\theta)-3(1-2\:sin^{2}\theta\:cos^{2}\theta)+1

=2-6\:sin^{2}\theta\:cos^{2}\theta-3+6\:sin^{2}\theta\:cos^{2}\theta+1

=0=R.H.S.

Hence proved.

Note:

We must know that, sin^{2}\theta+cos^{2}\theta=1 when we try to solve the problem.

Similar questions