Math, asked by harshit395887, 3 months ago


2( \sin (    ^ { 6  }   \theta     )  + \cos (    ^ { 6  }   \theta     )  )-3( \sin (    ^ { 4  }   \theta     )  + \cos (    ^ { 4  }   \theta     )  )+1  = 0
Prove the identity​

Answers

Answered by studarsani18018
1

Answer:

LHS=2(sin 6θ+cos 6 θ)−3(sin 4θ+cos 4 θ)+1

=2{(sin 2 θ+cos 2θ) 3 −3sin 2θcos 2 θ(sin 2 θ+cos 2θ)}

−3(sin 2θ+cos 2 θ) 2−2(sin 2θcos 2θ)}+1

We know, [sin²x+cos²x=1]

=2{1−3sin 2θcos 2θ}−3{1−2sin 2 θcos 2 θ}+1

=2−6sin 2θcos 2 θ−3+6sin 2 θcos 2 θ+1

=0

=RHS

Similar questions