Prove the identity
Answers
Answered by
1
Answer:
LHS=2(sin 6θ+cos 6 θ)−3(sin 4θ+cos 4 θ)+1
=2{(sin 2 θ+cos 2θ) 3 −3sin 2θcos 2 θ(sin 2 θ+cos 2θ)}
−3(sin 2θ+cos 2 θ) 2−2(sin 2θcos 2θ)}+1
We know, [sin²x+cos²x=1]
=2{1−3sin 2θcos 2θ}−3{1−2sin 2 θcos 2 θ}+1
=2−6sin 2θcos 2 θ−3+6sin 2 θcos 2 θ+1
=0
=RHS
Similar questions