Math, asked by dasguptakaavya, 8 months ago


(2 \sqrt{3}   + 3 \sqrt{2} ) \div 2  \sqrt{3}  - 3 \sqrt{2}  = a - b \sqrt{6}
Please find a and b​

Answers

Answered by Anonymous
2

Answer:

Value \: of \: a =  - 5 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: b = 2

Step-by-step explanation:

Since,

 \frac{(2 \sqrt{3} + 3 \sqrt{2})  }{(2 \sqrt{3} - 3 \sqrt{2})  }  =  \frac{2 \sqrt{3}  + 3 \sqrt{2} }{2 \sqrt{3}  - 3 \sqrt{2} }  \times  \frac{2 \sqrt{3} + 3 \sqrt{2}  }{2 \sqrt{3}  + 3 \sqrt{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{4 \times 3 + 9 \times 2 + 2 \times 2 \sqrt{3}  \times 3 \sqrt{2} }{(2 \sqrt{3}) {}^{2} -( 3 \sqrt{2}  ) {}^{2}  }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =   \frac{12 + 18 + 12 \sqrt{6} }{12 - 18}  =  \frac{30 + 12 \sqrt{6} }{ - 6}

that \: is \:  =  >  - 5 - 2 \sqrt{6}

 Given \: expression...

 \frac{2 \sqrt{3}  + 3 \sqrt{2} }{2 \sqrt{3}  - 3 \sqrt{2} }  = a - b \sqrt{6}   \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  >  (- 5) - ( - 2 \sqrt{6} ) \\ that \: is =  > ( - 5) + 2 \sqrt{6}

Therefore \: a =  - 5 \: and \: b = 2.

Hope this proves helpful -ᄒᴥᄒ-

Similar questions