Math, asked by ipsita1301, 2 months ago


 {2}^{x + 1}  =  \: {4}^{x - 3}  \: find \: the \: value \: of \: x

Answers

Answered by BrainlyHoney
2

Hello Your Answer is below :)

\overbrace{ \underbrace{ \fcolorbox{white}{pink}{ \blue\dag \tt Answer :– x = 4 \red\dag}}}

 \tt \longrightarrow \: {2}^{x + 1} = \: {4}^{x - 3} \\  \\ \longrightarrow \tt 2 ^{x + 1}  =  {2}^{(2 \times x) - 3}  \:  \:  \\  \\ \longrightarrow \tt \: x + 1 = 2x - 3 \:  \\  \\ \longrightarrow \tt \: x - 2x =  - 3 - 1 \\  \\ \longrightarrow \tt - x =  - 4 \:\\  \\ \rm So, therefore  \rm \boxed{ \tt\red{{x = 4}}}

Important in this solution -

  • \tt [ \red{As  \: we  \: know, \: when \: base \: is \: same \: then \: we \: equate \: the \: powers }]

  •  [ \: ( - ) \times ( - ) = ( + ) ]

  • [ \red{ As \:  we \:  know,{2}^{2} = 4 }]

Note - Scroll left to right to view full Answer

Hope You understood :)

Good Night !!

Similar questions