Math, asked by IAmAnIdiot, 2 days ago

2^{|x+2|}-|2^{x+1}-1|=2^{x+1}+1
Find the value of x

Answers

Answered by shadowsabers03
10

Case 1:- Let,

\small\text{$\longrightarrow |x+2|=x+2$}

\small\text{$\Longrightarrow x+2\in [0,\ \infty)$}

\small\text{$\longrightarrow x\in [-2,\ \infty)\quad\quad\dots(1)$}

Let,

\small\text{$\longrightarrow\left|2^{x+1}-1\right|=2^{x+1}-1$}

\small\text{$\Longrightarrow 2^{x+1}-1\in[0,\ \infty)$}

\small\text{$\longrightarrow 2^{x+1}\in[1,\ \infty)$}

\small\text{$\longrightarrow x+1\in[0,\ \infty)$}

\small\text{$\longrightarrow x\in[-1,\ \infty)\quad\quad\dots(i)$}

Taking (1) and (i),

\small\text{$\longrightarrow x\in[-1,\ \infty)$}

Then,

\small\text{$\longrightarrow 2^{x+2}-\left(2^{x+1}-1\right)=2^{x+1}+1$}

\small\text{$\longrightarrow 2^{x+2}-2^{x+1}+1=2^{x+1}+1$}

\small\text{$\longrightarrow 2^{x+2}-2^{x+1}-2^{x+1}=0$}

\small\text{$\longrightarrow 2^{x+2}-2\cdot2^{x+1}=0$}

\small\text{$\longrightarrow 2^{x+2}-2^{x+2}=0$}

\small\text{$\longrightarrow0=0$}

So the equation is satisfied for every x in the domain.

\small\text{$\Longrightarrow x\in[-1,\ \infty)\quad\quad\dots(a)$}

Case 1.2:- Let,

\small\text{$\longrightarrow\left|2^{x+1}-1\right|=1-2^{x+1}$}

\small\text{$\Longrightarrow x\in(-\infty,\ -1]\quad\quad\dots(ii)$}

Taking (1) and (ii),

\small\text{$\longrightarrow x\in[-2,\ -1]$}

Then,

\small\text{$\longrightarrow 2^{x+2}-\left(1-2^{x+1}\right)=2^{x+1}+1$}

\small\text{$\longrightarrow 2^{x+2}-1+2^{x+1}=2^{x+1}+1$}

\small\text{$\longrightarrow 2^{x+2}=2$}

\small\text{$\longrightarrow 2^{x+1}=1$}

\small\text{$\longrightarrow x+1=0$}

\small\text{$\longrightarrow x=-1\in[-2,\ -1]$}

\small\text{$\Longrightarrow x\in\{-1\}\quad\quad\dots(b)$}

Case 2:- Let,

\small\text{$\longrightarrow |x+2|=-x-2$}

\small\text{$\Longrightarrow x\in(-\infty,\ -2]\quad\quad\dots(2)$}

Taking (2) and (i),

\small\text{$\Longrightarrow x\in\phi\quad\quad\dots(c)$}

Taking (2) and (ii),

\small\text{$\Longrightarrow x\in(-\infty,\ -2]$}

Then,

\small\text{$\longrightarrow 2^{-x-2}-\left(1-2^{x+1}\right)=2^{x+1}+1$}

\small\text{$\longrightarrow 2^{-x-2}-1+2^{x+1}=2^{x+1}+1$}

\small\text{$\longrightarrow 2^{-x-2}=2$}

\small\text{$\longrightarrow -x-2=1$}

\small\text{$\longrightarrow x=-3\in(-\infty,\ -2]$}

\small\text{$\Longrightarrow x\in\{-3\}\quad\quad\dots(d)$}

Taking \small\text{$(a)\lor(b)\lor(c)\lor(d),$}

\small\text{$\longrightarrow x\in[-1,\ \infty)\cup\{-1\}\cup\phi\cup\{-3\}$}

\small\text{$\longrightarrow\underline{\underline{x\in\{-3\}\cup[-1,\ \infty)}}$}


amansharma264: Good
Similar questions