Math, asked by gggggggg48, 8 months ago

2 {x}^{2}  - 27

Answers

Answered by Anonymous
191

Step-by-step explanation:

\pink{\bold{\underline{ ✪ UPSC-ASPIRANT✪ }}} \red{\bold{\underline{\underline{QUESTION:-}}}} Q:- 2 {x}^{2} - 27 \huge\tt\underline\blue{Answer } _ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️ ════════════XXX═════════════ ⟹ 2 {x}^{2} - 27 ⟹ { (\sqrt{2x} )}^{2} - {(3 \sqrt{3} )}^{2} It is the form of a^2-b^2 ⟹ {a}^{2} - {b}^{2} = (a + b)(a - b) ⟹ So, {( \sqrt{2x} )}^{2} - {(3 \sqrt{3}) }^{2} = ( \sqrt{2}x + 3 \sqrt{3} )( \sqrt{2} x - 3 \sqrt{3} )  ∴2 {x}^{2} - 27 = ( \sqrt{2} x + 3 \sqrt{3} )( \sqrt{2} x - 3 \sqrt{3} ) ════════════XXX═════════════ HOPE IT HELPS YOU

. _____________________

Thankyou:)

Answered by Anonymous
3

Step-by-step explanation:

⟹\sf {( \sqrt{2x} )}^{2} - {(3 \sqrt{3}) }^{2} = ( \sqrt{2}x + 3 \sqrt{3} )( \sqrt{2} x - 3 \sqrt{3} )  \sf \red{ 2 {x}^{2} - 27 = ( \sqrt{2} x + 3 \sqrt{3} )( \sqrt{2} x - 3 \sqrt{3} })

Similar questions