Math, asked by imsanjana, 12 hours ago


2 x  - 3 \leqslant x + 1 \leqslant 4x + 7
linear inequations​

Answers

Answered by Anonymous
15

Given :

2 x - 3 \leqslant x + 1 \leqslant 4x + 7\\\\

2 x - 3 \leqslant x + 1\\\\

  • Let's solve this one

2 x - x\leqslant 3+ 1\\\\

x\leqslant 4\\\\

  • Now let's solve this one too

x + 1 \leqslant 4x + 7\\\\

 x-4x\leqslant 7-1\\\\

 - 3x\leqslant 6\\\\

 3x \geqslant -6\\\\

x\geqslant   \dfrac{( - 6)}{3}\\\\

x \geqslant  - 2\\\\

Hence, x lies between -2 ≤ x ≤ 4

Points to remember :

Linear inequalities is same as linear equations, but instead of fundamental operation these are connected with inequalities (<,>,≤,≥). And also, if we multiply or divide by negative sign, inequality get reversed.

Answered by ViciousQueen
2

Step-by-step explanation:

\bf\LARGE\underline{\underline{\red{Question :}}}

  • \tt\large2 x - 3 \leqslant x + 1 \leqslant 4x + 7 linear inequations.

\bf\LARGE\underline{\underline{\green{Solution :}}}

\tt\large2 x - 3 \leqslant x + 1 \leqslant 4x + 7

Let's solve the first part :

\implies\large\tt 2x - 3  \:  \leqslant  \: x + 1

\implies\large\tt 2x - x  \leqslant  3 + 1

\implies\large\tt x  \leqslant  4

Now, let's solve the second part :

\implies\tt\large \: x + 1 \leqslant 4x + 7

\implies\large\tt x - 4x \leqslant 7 - 1

\implies\large\tt -3x \leqslant 6

\implies\large\tt \: x   \geqslant   \frac{6}{ - 3}

\implies\large\tt x   \geqslant  -2

Therefore, x lies between \large\tt -2 \leqslant x \leqslant 4

Similar questions