Math, asked by amalkumarbandyopadhy, 1 month ago

{({2}^{x} - 4)}^{3} + {({4}^{x} - 2)}^{3} = {({4}^{x} + {2}^{x} - 6 )}^{3}
​Sum of all real values of x is ?

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:{({2}^{x} - 4)}^{3} + {({4}^{x} - 2)}^{3} = {({4}^{x} + {2}^{x} - 6 )}^{3}

can be rewritten as

\rm :\longmapsto\:{({2}^{x} - 4)}^{3} + {({4}^{x} - 2)}^{3} = {({4}^{x} + {2}^{x} - 4 - 2)}^{3}

\rm :\longmapsto\:{({2}^{x} - 4)}^{3} + {({4}^{x} - 2)}^{3} = { \bigg(({4}^{x} - 2) + ({2}^{x} - 4) \bigg)}^{3}

Let assume that

\rm :\longmapsto\: {2}^{x}  - 4 = a

and

\rm :\longmapsto\: {4}^{x}  - 2 = b

So, given equation can be rewritten as

\rm :\longmapsto\: {a}^{3}  +  {b}^{3}  =  {(a + b)}^{3}

\rm :\longmapsto\: \cancel {a}^{3}  + \cancel {b}^{3}  = \cancel {a}^{3}  +\cancel  {b}^{3}  + 3ab(a + b)

\rm :\longmapsto\:3ab(a + b) = 0

\rm :\implies\:a = 0 \:  \: or \:  \: b = 0 \:  \: or \: a + b = 0

Consider,

\rm :\longmapsto\:a = 0

\rm :\longmapsto\: {2}^{x} - 4  = 0

\rm :\longmapsto\: {2}^{x}  = 4

\rm :\longmapsto\: {2}^{x}  =  {2}^{2}

\bf :\implies\:x = 2 -  -  - (1)

Consider,

\rm :\longmapsto\:b = 0

\rm :\longmapsto\: {4}^{x} - 2  = 0

\rm :\longmapsto\: {2}^{2x}   = 2

\rm :\longmapsto\: {2}^{2x}   =  {2}^{1}

\rm :\longmapsto\:2x = 1

\bf :\implies\:x =  \dfrac{1}{2} -  -  - (2)

Consider,

\rm :\longmapsto\:a + b = 0

\rm :\longmapsto\: {2}^{x} - 4 +  {4}^{x} - 2 = 0

\rm :\longmapsto\: {2}^{x}+  {4}^{x} = 2 + 4

\rm :\longmapsto\: {2}^{x}+  {4}^{x} =  {2}^{1}  +  {4}^{1}

On comparing, we get

\bf\implies \:x = 1 -  -  - (3)

So, from equation (1), (2) and (3), we concluded that

\bf :\longmapsto\:x = 2 \:  \: or \:  \:  \dfrac{1}{2}  \:  \: or \:  \: 1

Hence,

Sum of all real values of x is

\rm \:  =  \:  \: 1 + 2 + \dfrac{1}{2}

\rm \:  =  \:  \: 3+ 0.5

\rm \:  =  \:  \: 3.5

Hence,

   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{\boxed{ \bf{ \: Option \:  (D) \: is \: correct}}}

Identities Used :-

\rm :\longmapsto\: {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)

\rm :\longmapsto\: {a}^{x}  =  {a}^{y}  \implies \: x = y

Similar questions