Math, asked by pooja80852, 11 months ago


 {2}^{x - 7}  \times  {5}^{x - 4}  = 1250

Attachments:

Answers

Answered by AbhijithPrakash
6

Answer:

2^{x-7}\times \:5^{x-4}=1250\quad :\quad x=8

Step-by-step explanation:

2^{x-7}\times \:5^{x-4}=1250

\mathrm{Apply\:exponent\:rule}:\quad \:a^{b+c}=a^ba^c

5^{x-4}=5^{x-7}\times \:5^3

2^{x-7}\times \:5^{x-7}\times \:5^3=1250

\mathrm{Apply\:exponent\:rule}:\quad \:a^cb^c=\left(ab\right)^c

2^{x-7}\times \:5^{x-7}=\left(2\times \:5\right)^{x-7}=10^{x-7}

10^{x-7}\times \:5^3=1250

\mathrm{Divide\:both\:sides\:by\:}5^3

\frac{10^{x-7}\times \:5^3}{5^3}=\frac{1250}{5^3}

\mathrm{Simplify}

10^{x-7}=\frac{1250}{5^3}

\mathrm{Simplify\:}\frac{1250}{5^3}

\mathrm{Factor}\:1250:\quad 5^4\times \:2

=\frac{5^4\times \:2}{5^3}

\mathrm{Cancel\:}\frac{2\times \:5^4}{5^3}:\quad 2\times \:5

=2\times \:5

\mathrm{Multiply\:the\:numbers:}\:2\times \:5=10

=10

10^{x-7}=10

\mathrm{If\:}a^{f\left(x\right)}=a^{g\left(x\right)}\mathrm{,\:then\:}f\left(x\right)=g\left(x\right)

x-7=1

\mathrm{Solve\:}\:x-7=1:\quad x=8

x=8

Attachments:
Similar questions