Math, asked by AnanyaBaalveer, 3 days ago


25( {5}^{x - 2} ) =  {5}^{x}
PROVE THAT LHS = RHS​

Answers

Answered by BrainlyUser2640
2

Answer:

25 = 5 ^{2}  \\ 5 ^{2} (5 ^{x - 2} ) = 5 ^{x}  \\ bases \: are \: same \\  so \: we \: would \: compare  \\ only \: powers \\ 2(x - 2) = x \\ 2x - 4 = x \\ x = 4

Therefore x=4

Substituting x=4, we get:

 {5}^{2} ( {5}^{4 - 2} ) =  {5}^{4}  \\ 25 \times 25 = 625 \\ 625 = 625

Therefore, L.H.S.=R.H.S.

Hope it helps

Mark as Brainliest!!!!

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given expression, to prove that

\rm \: 25 \: [ {5}^{x - 2}] =  {5}^{x}  \\

Consider LHS

\rm \: 25 \: [ {5}^{x - 2}]  \\

can be rewritten as

\rm \:  =  \: 5 \times 5 \times  \: {5}^{x - 2} \\

We know,

\boxed{ \rm{ \: {x}^{m} \times  {x}^{n} \:  =  \:  {x}^{m + n}  \:  \: }} \\

So, using this law of exponents, we get

\rm \:  =  \:  {5}^{1 + 1 + x - 2}  \\

\rm \:  =  \:  {5}^{2 + x - 2}  \\

\rm \:  =  \:  {5}^{x}  \\

Hence,

\rm\implies \:\rm \: 25 \: [ {5}^{x - 2}] =  {5}^{x}  \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{ {x}^{0}  = 1}\\ \\ \bigstar \: \bf{ {x}^{m} \times  {x}^{n} =  {x}^{m + n} }\\ \\ \bigstar \: \bf{ {( {x}^{m})}^{n}  =  {x}^{mn} }\\ \\\bigstar \: \bf{ {x}^{m}  \div  {x}^{n}  =  {x}^{m - n} }\\ \\ \bigstar \: \bf{ {x}^{ - n}  =  \dfrac{1}{ {x}^{n} } }\\ \\\bigstar \: \bf{ {\bigg(\dfrac{a}{b} \bigg) }^{ - n}  =  {\bigg(\dfrac{b}{a}  \bigg) }^{n} }\\ \\\bigstar \: \bf{ {x}^{m}  =  {x}^{n}\rm\implies \:m = n }\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions