Math, asked by nishigoe9311, 1 year ago


 {25}^{x - 1} + 100 =  {5}^{2x - 1}
Find the value of x

Answers

Answered by Anonymous
5
Answer :

given \: equation \:  =  {25}^{x - 1}  + 100 =  {5}^{2x - 1}  \\  \\  =  >  \: firstly \: move \: the \: constant \: to \: ther \: right \: side \:  \\  \\  =  >  \:  {25}^{x - 1}  =  {5}^{2x - 1}  - 100 \\  \\  =  >  \: move \: the \: expression \:  {5}^{2x - 1}  \: to \: left \: side \:  \\  \\  =  >  \:  {25}^{x - 1}  -  {5}^{2 x- 1}  =  - 100 \\  \\  =  >  \: write \: the \: expression \: in \: the \: exponental \: form \: with \: base \: 5 \\  \\  =  >  \:  {5}^{2 x- 2}  -  {5}^{2x - 1}  =  - 100 \\  \\  =  >  \: factor \: the \: expression \\  \\  =  >  \: (1 - 5)5 {}^{2x - 2}  =  - 100 \\  \\  =  >  \: calculate \: the \: difference \\  \\  =  >  \:  - 4 \times  {5}^{2x - 2}  =  - 100 \\  \\  =  >  \: divide \: both \: sides \: by \: 4 \\  \\  =  >  \:   {5}^{2x - 2}  = 25 \\  \\  =  >  \:  write \: the \: number \: in \: the \: exponental \: form \: with \: base \: 5 \\  \\  =  >  \:  {5}^{2x - 2}  =  {5}^{2}  \\  \\  =  >  \: bases \: are \: same \: so \: set \: the \: exponents \: equal \\  \\  =  >  \: 2x - 2 = 2 \\  \\  =  >  \: 2x = 2 + 2 \\  \\  =  >  \: 2x = 4 \\  \\  =  >  \: x =  \frac{4}{2}  \\  \\  =  >  \: x = 2



Hope it would help you
Similar questions