Answers
Answered by
2
Answer:
mate it's to simple .
this is a identity of
\\so, your answer is \\
hope it helps .
mark it as brainlist
Answered by
3
Explanation:
As we Know:
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
= (2a - 3b - 2c) [(2a)² + (3b)² + (2c)² + 2a*3b - 3b*2c + 2c*2a]
= (2a - 3b - 2c) [(2a)² + (-3b)² + (-2c)² + 2*2a*(-3b) - 2*2a*(-3b) + 2*(-3b)*(-2c) - 2*(-3b)*(-2c) + 2*(-2c)*2a - 2*(-2c)*2a + (2a*3b - 3b*2c + 2c*2a)]
= (2a - 3b - 2c) [ (2a - 3b - 2c)² - 2*2a*(-3b) - 2*(-3b)*(-2c) - 2*(-2c)*2a + (2a*3b - 3b*2c + 2c*2a) ]
= (2a - 3b - 2c) [ (2a - 3b - 2c)² + 12ab - 12bc + 8ac + 6ab - 6bc + 4ac ]
= (2a - 3b - 2c) [(2a - 3b - 2c)² + 18ab - 18bc + 12ac]
<hope it helps>
Thanks!
Similar questions