Math, asked by rajeevbaghel5921, 10 months ago


(2a - 3b - 2c)( {4a}^{2}  +  {9b}^{2}  +  {4c}^{2}  + 6ab - 6bc + 4ca)

Answers

Answered by Anonymous
2

Answer:

mate it's to simple .

this is a identity of

 (a^{2}-b^{2}-c^{2} )

\\so, your answer is \\

 (2a^{2}-3b^{2}-2c^{2})

hope it helps .

mark it as brainlist

Answered by Raja395
3

Explanation:

As we Know:

(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca

(2a - 3b - 2c)( {4a}^{2} + {9b}^{2} + {4c}^{2} + 6ab - 6bc + 4ca)

= (2a - 3b - 2c) [(2a)² + (3b)² + (2c)² + 2a*3b - 3b*2c + 2c*2a]

= (2a - 3b - 2c) [(2a)² + (-3b)² + (-2c)² + 2*2a*(-3b) - 2*2a*(-3b) + 2*(-3b)*(-2c) - 2*(-3b)*(-2c) + 2*(-2c)*2a - 2*(-2c)*2a + (2a*3b - 3b*2c + 2c*2a)]

= (2a - 3b - 2c) [ (2a - 3b - 2c)² - 2*2a*(-3b) - 2*(-3b)*(-2c) - 2*(-2c)*2a + (2a*3b - 3b*2c + 2c*2a) ]

= (2a - 3b - 2c) [ (2a - 3b - 2c)² + 12ab - 12bc + 8ac + 6ab - 6bc + 4ac ]

= (2a - 3b - 2c) [(2a - 3b - 2c)² + 18ab - 18bc + 12ac]

<hope it helps>

Thanks!

Similar questions