Math, asked by dp240, 4 months ago


2ab - a {2}  - b {2}  + c {2}

Attachments:

Answers

Answered by Anonymous
55

Question :-

Factorize - \sf 2ab - a^ {2} - b^ {2} + c^ {2}

Identities used -

  • \sf a^2 + b^2 - 2ab = (a-b)^2
  • \sf a^2 - b^2 = (a+b)(a-b)

Solution :-

\sf 2ab - a^ {2} - b^ {2} + c^ {2}

\sf = - [ a^2 + b^2 - 2ab - c^2]

\sf = - [ (a - b)^2 - c^2]

\sf = - [( a - b + c )(a - b - c)]

\sf = (a-b+c)(b+c-a)

Answered by Anonymous
10

Answer:

Question :-

Factorize - \sf 2ab - a^ {2} - b^ {2} + c^ {2}

Identities used -

\sf a^2 + b^2 - 2ab = (a-b)^2a

➩ \sf = - [ a^2 + b^2 - 2ab - c^2]=−[a

➩ \sf = - [ (a - b)^2 - c^2]=−[(a−b)

➩ \sf = - [( a - b + c )(a - b - c)]=−[(a−b+c)(a−b−c)]

➩ \sf = (a-b+c)(b+c-a)=(a−b+c)(b+c−a)

Similar questions