please answer fast
Answers
Answer:
A(B+C)=AB+AC
\displaystyle (2p+3q)(4p^2-6pq+9q^2)(2p+3q)(4p2−6pq+9q2)
First, you have to solve with parenthesis.
\displaystyle 2p*4p^2+2p(-6pq)+2p*9q^2+3q*4p^2+3q(-6pq)+3q*9q^22p∗4p2+2p(−6pq)+2p∗9q2+3q∗4p2+3q(−6pq)+3q∗9q2
Change negative sign to positive sign.
\Rightarrow \displaystyle +(-b)=-b⇒+(−b)=−b
Rewrite the problem.
\displaystyle 2\cdot \:4p^2p-2\cdot \:6ppq+2\cdot \:9pq^2+3\cdot \:4p^2q-3\cdot \:6pqq+3\cdot \:9q^2q2⋅4p2p−2⋅6ppq+2⋅9pq2+3⋅4p2q−3⋅6pqq+3⋅9q2q
Solve.
\displaystyle 2*\:4p^2p-2* \:6ppq+2* \:9pq^2+3* \:4p^2q-3*\:6pqq+3*\:9q^2q2∗4p2p−2∗6ppq+2∗9pq2+3∗4p2q−3∗6pqq+3∗9q2q
\displaystyle 2*4p^2p2∗4p2p
Multiply.
\Rightarrow\displaystyle 2\times4p^2p=8p^3⇒2×4p2p=8p3
\displaystyle 2\times6ppq=12p^2q2×6ppq=12p2q
\displaystyle 2\times9=182×9=18
\displaystyle 4\times3=124×3=12
\displaystyle 6\times3=186×3=18
\displaystyle 9\times3=279×3=27
\Rightarrow \displaystyle 8p^3-12p^2q+18pq^2+12p^2q-18pq^2+27q^3⇒8p3−12p2q+18pq2+12p2q−18pq2+27q3
Combined like terms. (Group like terms.)
\Rightarrow\displaystyle 8p^3-12p^2q+12p^2q+18pq^2-18pq^2+27q^3⇒8p3−12p2q+12p2q+18pq2−18pq2+27q3
Then, you add or subtract elements to the numbers from left to right.
\displaystyle 12-12=012−12=0
\displaystyle -12p^2q+12p^2q=0−12p2q+12p2q=0
Rewrite the problem again.
\displaystyle 8p^3+18pq^2-18pq^2+27q^38p3+18pq2−18pq2+27q3
Subtract.
\displaystyle 18-18=018−18=0
\Rightarrow \Large\boxed{8p^3+27q^3}⇒8p3+27q3
Ans=
\Rightarrow \Large\boxed{8p^3+27q^3}⇒8p3+27q3