Math, asked by jk3324610, 4 months ago


2x {}^{2}  + 3x - 10 = x {}^{2}  + 6x + 30
solve by quadratic formula please? ​

Answers

Answered by MrImpeccable
9

{\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}

To Solve:

:\longrightarrow 2x^{2} + 3x - 10 = x^{2} + 6x + 30 \\\\:\implies 2x^2 + 3x - 10 - (x^2 + 6x + 30) = 0 \\\\:\implies 2x^2 + 3x - 10 - x^2 - 6x - 30 = 0 \\\\:\implies x^2 - 3x - 40 = 0 \\\\:\implies x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}\\

Where, a = coefficient of x^2 = 1, b = coefficient of x = -3, and c = constant = -40

\\:\implies x = \dfrac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(-40)}}{2(1)} \\\\:\implies x = \dfrac{3 \pm \sqrt{9 + 160}}{2} \\\\:\implies x = \dfrac{3 \pm \sqrt{169}}{2} \\\\:\implies x = \dfrac{3 \pm 13}{2} \\\\:\implies x = \dfrac{3 + 13}{2} \:\:\:OR\:\:\: x = \dfrac{3 - 13}{2} \\\\:\implies x = \dfrac{16}{2} \:\:\:OR\:\:\: x = \dfrac{-10}{2} \\\\\bf{:\implies x = 8 \:\:\:OR\:\:\: x = -5}

Hope it helps!!!!

Similar questions