Math, asked by vishakn0017, 10 months ago

2x^{2}+x-4

Find the root by completing the square method.

Answers

Answered by Anonymous
8

 \huge \mathfrak \red{answer}

________________________________

Question:

this is the qudratic equation

Find the root by completing the square method.

 \sf \red{ {2x}^{2} + x - 4}

____________________________

  \sf{2 {x}^{2} + x - 4 = 0}

 \sf{⇒ {x}^{2} +  \frac{x}{2} - 2 = 0}

 \sf{⇒ {x}^{2} +  \frac{x}{2} = 2}

adding the both sides we get

 \sf{ \frac{1}{16}}

____________________________________

 \sf{ ⇒{x}^{2}  +  \frac{x}{2} +  \frac{1}{16} = 2 +  \frac{1}{16}}

 \sf{⇒(x +  \frac{1}{4})}^{2}  =  \frac{33}{16}

 \sf{⇒x +  \frac{1}{4} = ± \frac{ \sqrt{33} }{4}}

 \sf{⇒x = ± \frac{ \sqrt{33}}{4} -  \frac{1}{4}}

 \sf{⇒x =  \frac{ - 1 -  \sqrt{33} }{4}  \frac{ - 1 +  \sqrt{33}}{4}}

___________________________________

hence proved

_________________________________

do you know what is qudratic equation?

  • A qudratic equation is a polynomial equation of second degree

  • the general form is

  •  \sf{ {ax}^{2} + bx + c = 0}

  • where a, b and c are real number then a is not equal to zero

  • A qudratic equation in x is also called a second degree polynomial equation in x

I hope it's help uh

Answered by Cynefin
8

 \large{ \dag{ \bold{ \red{ \underline{ \underline{Question...}}}}}}

2 {x}^{2}  + x - 4 \\  \\  \sf{ \large{find \: roots \: by \: completing \: square \: method.}}

 \large{ \dag{ \bold{ \green{ \underline{ \underline{Answer...}}}}}}

 \large{ \sf{x =  \frac{ \sqrt{33}  -  1 }{4} }} \: and \:  \frac{ - ( \sqrt{33 }  + 1)}{4}

 \large{ \dag{ \bold{ \red{ \underline{ \underline{Solution...}}}}}}

 \sf{ \star{ \purple{given...}}}

  • P(x)= 2x^2+x-4

 \sf{ \star{ \purple{to \: find...}}}

  • Value the roots of p(x)

 \large{ \sf{ \implies{ \: 2 {x}^{2}  +x-4 = 0}}} \\  \\  \large{ \sf{ \implies{  \frac{2 {x}^{2} + x - 4 }{2}  =  \frac{0}{2} }}} \\  \large{ \red{ \sf{dividing \: by \: 2 \: to \: simpify \: coefficient \: f {x}^{2} }}} \\  \\  \large{ \sf{ \implies{ {x}^{2}  +  \frac{x}{2}  -2 = 0}}} \\  \\  \large{ \sf{ \implies{ {x}^{2}  +  \frac{x}{2}  =  2}}} \\  \\  \large{ \sf{ \implies{ {x}^{2}  + 2 \times x \times  \frac{1}{4}  + ( \frac{1}{4} ) {}^{2}  =  2 +  (\frac{1}{4} ) {}^{2} }}} \\  \\  \large{ \sf{ \implies{(x +  \frac{1}{4} ) {}^{2}  =   2 +  \frac{1}{16} }}} \\  \\  \large{ \sf{ \implies{(x +  \frac{1}{4}) {}^{2}   =  \frac{  32 + 1}{16} }}} \\  \\  \large{ \sf{ \implies{(x +  \frac{1}{4} ) {}^{2}  =  \frac{ 33}{16} }}} \\  \\   \large{ \sf{ \implies{x +  \frac{1}{4}  =  \pm{ \sqrt{\frac{ 33}{16}} }}}} \\  \\  \\   \large{ \purple{ \boxed{ case - 1)}}} \:  \:  \large{ \sf{x +  \frac{1}{4}  =  \sqrt{ \frac{33}{16} } }} \\  \\  \large{ \sf{ \implies{ x =  \frac{ \sqrt{33} }{4}  -  \frac{1}{4} }}} \\ \\   \large{ \sf{ \implies{ \red{ \boxed{x =  \frac{ \sqrt{33}  - 1}{4} }}}}} \\  \\  \large{ \sf{ \purple{ \boxed{case - 2)}}}} \:  \:  \large{ \sf{x  +  \frac{1}{4}  =  -  \sqrt{ \frac{33}{16} }}} \\  \\  \large{ \sf{ \implies{x   =  -  \frac{ \sqrt{33} }{4}  -  \frac{1}{4} }}} \\  \\  \large{ \sf{ \implies{ \red{ \boxed{x =  - \frac{( \sqrt{33 }  + 1)}{4}}}}}}

 \large{ \orange{ \underline{ \bold{ \underline{ \star{required \: answer \: is \:  \frac{ \sqrt{33} - 1 }{4} and \:  \frac{ - ( \sqrt{33} + 1) }{4} }}}}}}

Similar questions