Math, asked by anujaysingh, 5 hours ago


2x + 3 =  9\frac{x}{2}
pls help me class 8 ​

Answers

Answered by ranisamridhi29
1

Step-by-step explanation:

that's your answer

Attachments:
Answered by anilsingh30886
0

Answer:

Answer:

\huge \red{ \frac{1}{2} }

2

1

Step-by-step explanation:

Given limit can be written as

\begin{gathered}\displaystyle \lim_{ n \to \infty} \frac{\int_{0}^{ \frac{1}{n} } {x}^{2018x + 1} \: dx}{ \frac{1}{ {n}^{2} } } \\ \end{gathered}

n→∞

lim

n

2

1

0

n

1

x

2018x+1

dx

Now use L hospital rule . To differentiate numerator we will use fundamental theorem of calculas .

\begin{gathered} \frac{d}{dx} \int_{0} ^{y} f(t) \: dt = f(y). \frac{dy}{dx} \\ \end{gathered}

dx

d

0

y

f(t)dt=f(y).

dx

dy

Our limit becomes

\begin{gathered}\displaystyle \lim_{ n \to \infty} \: \frac{( \frac{1}{n} ) ^{2018. \frac{1}{n} + 1} . \frac{d}{dn}( \frac{1}{n} )}{ \frac{ - 2}{ {n}^{3} } } \\ \\ = \displaystyle \lim_{ n \to \infty} \: \frac{\bigg( \frac{1}{n} \bigg) ^{2018. \frac{1}{n} } \frac{1}{n} . ( \frac{ - 1}{n {}^{2} } )}{ \frac{ - 2}{ {n}^{3} } } \\ \\ = \displaystyle \lim_{ n \to \infty} \: \frac{\bigg( \frac{1}{n} \bigg) ^{2018. \frac{1}{n}} } {2} \\ \\ = \displaystyle \frac{1}{2} \lim_{ n \to \infty} \exp \bigg\{ \log\bigg( \frac{1}{n} \bigg) ^{2018. \frac{1}{n}} \bigg \} \\ \\ = \frac{1}{2} \lim_{ n \to \infty} \exp \bigg\{ \frac{2018}{n} \log\bigg( \frac{1}{n} \bigg) \bigg \} \\ \\ again \: l \: hopital \: rule \\ \\ = \frac{1}{2} \lim_{ n \to \infty} \exp \bigg\{ 2018\bigg( \frac{1}{ \frac{1}{n} } \bigg) .\frac{ - 1}{ {n}^{2} } \bigg \} \\ \\ = \frac{1}{2} \exp \{0 \} = \frac{1}{2} \end{gathered}

n→∞

lim

n

3

−2

(

n

1

)

2018.

n

1

+1

.

dn

d

(

n

1

)

=

n→∞

lim

n

3

−2

(

n

1

)

2018.

n

1

n

1

.(

n

2

−1

)

=

n→∞

lim

2

(

n

1

)

2018.

n

1

=

2

1

n→∞

lim

exp{log(

n

1

)

2018.

n

1

}

=

2

1

n→∞

lim

exp{

n

2018

log(

n

1

)}

againlhopitalrule

=

2

1

n→∞

lim

exp{2018(

n

1

1

).

n

2

−1

}

=

2

1

exp{0}=

2

1

Similar questions