
Answers
Given to find (2x + 3y )²
The question can be solve in Two methods
Method - 1 :-
Applying (a + b )² formula and solving
We know that ( a + b )² = a² + 2ab + b²
(2x + 3y )² Where a = 2x ; b = 3y
(2x + 3y )² = (2x)² + 2 (2x) (3y ) + (3y)²
(2x + 3y )² = 4x² + 12xy + 9y²
So, (2x + 3y )² = 4x² + 12xy + 9y²
Method - 2 :-
(2x + 3y )² can be written as (2x + 3y ) ( 2x + 3y )
Now do the normal multiplication
(2x + 3y ) ( 2x + 3y ) = 2x (2x + 3y) + 3y (2x + 3y)
(2x + 3y ) ( 2x + 3y) = 4x² + 6xy + 6xy + 9y²
(2x + 3y ) ( 2x + 3y) = 4x² + 12xy + 9y²
So,
(2x + 3y)² = 4x² + 12xy + 9y²
______________
Know more Some algebraic identities :-
a+ b)² = a² + b² + 2ab
( a - b )² = a² + b² - 2ab
( a + b )² + ( a - b)² = 2a² + 2b²
( a + b )² - ( a - b)² = 4ab
( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca
a² + b² = ( a + b)² - 2ab
(a + b )³ = a³ + b³ + 3ab ( a + b)
( a - b)³ = a³ - b³ - 3ab ( a - b)
If a + b + c = 0 then a³ + b³ + c³ = 3abc
a³ + b³ = ( a + b) (a²-ab + b²)
a³ - b³ = (a -b) (a² + ab + b²)