Science, asked by thapaavinitika6765, 8 months ago

$2x^5+x^4-2x-1=0\quad

solve

Answers

Answered by Anonymous
1

2x^5+x^4-2x-1=0\quad :\quad x=-\frac{1}{2},\:x=i,\:x=-i,\:x=-1,\:x=1

\mathrm{Solve\:by\:factoring}

\mathrm{Factor\:}2x^5+x^4-2x-1:\quad \left(2x+1\right)\left(x^2+1\right)\left(x+1\right)\left(x-1\right)

\left(2x+1\right)\left(x^2+1\right)\left(x+1\right)\left(x-1\right)=0

\mathrm{Using\:the\:Zero\:Factor\:Principle:\quad \:If}\:ab=0\:\mathrm{then}\:a=0\:\mathrm{or}\:b=0\:\left(\mathrm{or\:both}\:a=0\:\mathrm{and}\:b=0\right)

\mathrm{Solve\:}\:2x+1=0:\quad x=-\frac{1}{2}

\mathrm{Solve\:}\:x^2+1=0:\quad x=i,\:x=-i

\mathrm{Solve\:}\:x+1=0:\quad x=-1

\mathrm{Solve\:}\:x-1=0:\quad x=1

\mathrm{The\:solutions\:are}

x=-\frac{1}{2},\:x=i,\:x=-i,\:x=-1,\:x=1

Answered by Anonymous
2

Explanation:

 \sf \to  2x^5+x^4-2x-1=0 \\  \\  \: \sf \to   \:  x( {x}^{4}  +  {x}^{3}  - 2) - 1 = 0 \\  \\ \: \sf \to   \: \: (x - 1)({x}^{4}  +  {x}^{3}  - 2)  = 0 \\  \\ : \sf \to   \: (x - 1) \:  {x}^{2} ( {x}^{2}  + x) - 2 = 0 \\  \\  \sf \to \red{(x - 1) \: ( {x}^{2}  - 2)( {x}^{2}  + x)}

Similar questions