Math, asked by lakshaykhari2, 9 months ago


2x + 9y = 5 \\ 6x + 25y = 16 \\ elimination \: method

Answers

Answered by dkm4808
1

Solution:

2x + 9y =5            ......(i)

6x + 25y =16        ......(ii)

By Elimination Method

Multiplying equation (i) with 3

3(2x + 9y =5)

6x + 27y = 15        ......(iii)

From (i) and (iii)

6x + 25y = 16

6x + 27y = 15

-      -         -

      -2y  =  1

          y = -1/2

Putting y = -1/2 in equation (i) {can put in any of the 3 }

2x + 9 × \frac{-1}{2} = 5

2x +  \frac{-9}{2} = 5

2x = 5 + \frac{9}{2}

2x = \frac{19}{2}

Therefore,

x = \frac{19}{4}

Answered by Bᴇʏᴏɴᴅᴇʀ
6

Answer:-

\bf{x = \dfrac{19}{4}}

\bf{y = \dfrac{-1}{2}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Given:-

2x + 9y = 5 \: \: \: \: \: \: \longrightarrow\bf[eqn.1]

6x + 25y= 16 \: \: \: \: \: \: \longrightarrow\bf[eqn.2]

Method:-

Elimination \: Method

Solution:-

Multiplying [eqn.1] with 3 :-

6x + 27y = 15 \: \: \: \: \: \: \longrightarrow\bf[eqn.3]

Now, Subtracting [eqn.2] from [eqn.3]:-

\implies{6x + 27y -(6x + 25y) = 15 - (16)}

\implies{6x + 27y - 6x - 25y = -1}

\implies{ 2y = -1}

\implies\bf\boxed{y ={\dfrac{-1}{2}}}

Substituting the above value of \bf{y=\dfrac{-1}{2}} in [eqn.1]:-

\implies{2x + 9y = 5}

\implies{2x + 9 \bigg(\dfrac{-1}{2}\bigg) = 5}

\implies{2x - \dfrac{9}{2} = 5}

\implies{2x = 5 + \dfrac{9}{2}}

\implies{2x = \dfrac{19}{2}}

\implies\bf\boxed{x = \dfrac{19}{4}}

Hence,

\bf{x = \dfrac{19}{4}}

\bf{y = \dfrac{-1}{2}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions