Math, asked by rockingrisers2005, 11 months ago

3^{2x+1} -10.3^{x} +3=0
then x is equal to

Answers

Answered by Anonymous
10

Answer :

The value of x are -1 and 1

Given :

The equation is :

 \sf3 {}^{2x + 1}  - 10. 3^{x}  + 3 = 0

To Find :

  • The value of x

Solution :

\sf3 {}^{2x + 1}  - 10. 3^{x}  + 3 = 0 \\  \\  \implies \sf 3 {}^{2x} .3 - 10 .3{}^{x}  + 3 = 0 \\  \\  \sf \implies3.{(3  {}^{x} )}^{2}  - 10. {3}^{x}  + 3 = 0

 \sf{Let  \: us \:  consider \:  the  \: value \:  of \:   \bold{3 {}^{x} } }\\ \sf be \:  \bold{k }\:

 \sf \implies3k {}^{2}  - 10k + 3 = 0 \\  \\  \sf \implies3 {k}^{2}  - 9k - k + 3 = 0 \\  \\  \sf \implies3k(k - 3) - 1(k - 3) = 0 \\  \\  \sf \implies(k - 3)(3k - 1) = 0

Now we have from our consideration:

 \sf \implies k - 3 = 0 \\  \\  \implies \sf k = 3 \\  \\  \sf \implies {3}^{x}  = 3 \\  \\ \sf \implies {3}^{x}   =  {3}^{1} \\  \\   \bf \implies x = 1

and ,

 \sf \implies 3k - 1 = 0 \\  \\  \sf \implies3k = 1 \\  \\  \sf \implies k =  \dfrac{1}{3}  \\  \\  \sf \implies {3}^{x}  =  {3}^{ - 1}  \\  \\  \bf \implies x =  - 1

Answered by Saby123
8

...

 \tt{\huge{\purple{ ................... }}}

QuEsTi0N -

3^{2x+1} -10.3^{x} +3=0

then x is equal to ?

S0LUTI0N -

3^{2x+1} -10.3^{x} +3=0 \\ \\ Let \: { 3 } ^ x \: be \: a. \\ \\ => 3 { a } ^ 2 - 10 a + 3 = 0 \\ \\ => 3 { a }^ 2 - 9 a - a + 3 = 0 \\ \\ => 3a ( a - 3 ) - 1 ( a - 3 ) = 0 \\ \\ => ( 3a - 1 )( a - 3 ) = 0 \\ \\ => a = \dfrac{1}{3} \: or \: 3 . \\ \\ => { 3 } ^ x = { 3 } ^ { -1 } \\ \\ => x = -1 \\ \\ { 3 } ^ x = { 3 } ^ { 1 } \\ \\ => x = 1

Similar questions