Math, asked by pranavgeniusboy, 10 months ago


 {3}^{2x + 1}  =  {3}^{x + 2}  +  \sqrt{1 -  {6.3}^{ x} +  {3}^{2(x + 1)}  }
please answer my question

Answers

Answered by Swarup1998
2

Solution :

\mathrm{Given,\:3^{2x+1}=3^{x+2}+\sqrt{1-6.3^{x}+3^{2(x+1)}}}

\to \mathrm{3^{2x+1}=3^{x+2}+\sqrt{1-2.1.3^{x+1}+(3^{x+1})^{2}}}

\to \mathrm{3^{2x+1}=3^{x+2}+\sqrt{(1-3^{x+1})^{2}}}

\to \mathrm{3^{2x+1}=3^{x+2}+1-3^{x+1}}

\to \mathrm{3.3^{2x}=3^{2}.3^{x}+1-3.3^{x}}

\to \mathrm{3.(3^{x})^{2}=(9-3).3^{x}+1}

\to \mathrm{3z^{2}-6z=1,\:where\:3^{x}=z\:(say)}

\to \mathrm{z^{2}-2z+1=1+\frac{1}{3}}

\to \mathrm{(z-1)^{2}=(\frac{2}{\sqrt{3}})^{2}}

\to \mathrm{(z-1)^{2}-(\frac{2}{\sqrt{3}})^{2}=0}

\to \mathrm{(z-1+\frac{2}{\sqrt{3}})(z-1-\frac{2}{\sqrt{3}})=0}

\mathrm{Either\:z-1+\frac{2}{\sqrt{3}}=0\:or,\:z-1-\frac{2}{\sqrt{3}}=0}

\to \mathrm{z=1-\frac{2}{\sqrt{3}},\:1+\frac{2}{\sqrt{3}}}

Since z cannot be taken as negative for which the value of \mathrm{z=3^{x}} will be indeterminate.

\mathrm{z=1+\frac{2}{\sqrt{3}}}

\to \mathrm{3^{x}=1+\frac{2}{\sqrt{3}}}

\to \mathrm{x\:log_{e}3=log_{e}(1+\frac{2}{\sqrt{3}})}

\to \mathrm{x=\frac{log_{e}(1+\frac{2}{\sqrt{3}})}{log_{e}3}}

\to \mathrm{x=log_{3}(1+\frac{2}{\sqrt{3}})}

Hence, the required solution is

x = \mathrm{log_{3}(1+\frac{2}{\sqrt{3}})}

or, x = 0.699 ( approximately )

Similar questions