Math, asked by sajan6491, 14 hours ago

{3 \bigg[ { \sin^{4} \bigg( \frac{3\pi}{2} - \alpha \bigg) } + \sin^{4} (3\pi - \alpha ) \bigg] - 2 \bigg [ \sin^{6} \bigg( \frac{\pi}{2} + \alpha \bigg) + { \sin}^{6} (5\pi - \alpha ) \bigg]}

Answers

Answered by mathdude500
17

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:{3 \bigg[ { \sin^{4} \bigg( \frac{3\pi}{2} - \alpha \bigg) } + \sin^{4} (3\pi - \alpha ) \bigg] - 2 \bigg [ \sin^{6} \bigg( \frac{\pi}{2} + \alpha \bigg) + { \sin}^{6} (5\pi - \alpha ) \bigg]}

So, Let's evaluate first term of above expression.

Consider,

\rm :\longmapsto\:{3 \bigg[ { \sin^{4} \bigg( \dfrac{3\pi}{2} - \alpha \bigg) } + \sin^{4} (3\pi - \alpha ) \bigg]}

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ sin\bigg(\dfrac{3\pi}{2} - x \bigg) =  - cosx}}}

So, using this we get

\rm \:  =  \: 3\bigg[ {( - cos \alpha )}^{4} +  {[sin(2\pi + \pi -  \alpha )}^{4}\bigg]

\rm \:  =  \: 3\bigg[ {(cos \alpha )}^{4} +  {[sin( \pi -  \alpha )]}^{4}\bigg]

\rm \:  =  \: 3\bigg[ {(cos \alpha )}^{4} +  {[sin(\alpha )]}^{4}\bigg]

\rm \:  =  \: 3\bigg[ {( {sin}^{2} \alpha )}^{2} +  {( {cos}^{2} \alpha)}^{2}\bigg]

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{  {x}^{2} +  {y}^{2} =  {(x + y)}^{2} - 2xy \: }}}

So, using this identity, we get

\rm \:  =  \: 3\bigg[ {( {sin}^{2}  \alpha  +  {cos}^{2}  \alpha )}^{2}  - 2sin \alpha cos \alpha \bigg]

\rm \:  =  \: 3\bigg[ {(1 )}^{2}  - 2sin \alpha cos \alpha \bigg]

\rm \:  =  \: 3\bigg[ 1  - 2sin \alpha cos \alpha \bigg]

Now, Let's evaluate second term of the expression

Consider,

\rm :\longmapsto\:{2 \bigg [ \sin^{6} \bigg( \frac{\pi}{2} + \alpha \bigg) + { \sin}^{6} (5\pi - \alpha ) \bigg]}

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ sin\bigg(\dfrac{\pi}{2}  +  x \bigg) = cosx}}}

So, using this identity, we get

\rm \:  =  \: 2\bigg[ {cos}^{6} \alpha  +  {sin}^{6}(4\pi + \pi -  \alpha )\bigg]

\rm \:  =  \: 2\bigg[ {cos}^{6} \alpha  +  {sin}^{6}( \pi -  \alpha )\bigg]

\rm \:  =  \: 2\bigg[ {cos}^{6} \alpha  +  {sin}^{6}(\alpha )\bigg]

\rm \:  =  \: 2\bigg[ {(cos \alpha )}^{6} +  {(sin\alpha )}^{6}\bigg]

\rm \:  =  \: 2\bigg[ {( {sin}^{2} \alpha )}^{3} +  {( {cos}^{2} \alpha)}^{3}\bigg]

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{  {x}^{3} +  {y}^{3} =  {(x + y)}^{3} - 3xy(x + y) \: }}}

So, using this identity, we get

\rm \:  =  \: 2\bigg[ {( {cos}^{2}  \alpha  +  {sin}^{2}  \alpha )}^{3} - 3 {sin}^{2} \alpha  {cos}^{2} \alpha ( {cos}^{2} \alpha  +  {sin}^{2} \alpha )\bigg]

\rm \:  =  \: 2\bigg[ {(1)}^{3} - 3 {sin}^{2} \alpha  {cos}^{2} \alpha ( 1)\bigg]

\rm \:  =  \: 2\bigg[1 - 3 {sin}^{2} \alpha  {cos}^{2} \alpha \bigg]

Now, Consider

\rm :\longmapsto\:{3 \bigg[ { \sin^{4} \bigg( \frac{3\pi}{2} - \alpha \bigg) } + \sin^{4} (3\pi - \alpha ) \bigg] - 2 \bigg [ \sin^{6} \bigg( \frac{\pi}{2} + \alpha \bigg) + { \sin}^{6} (5\pi - \alpha ) \bigg]}

\rm \:  =  \: 3(1 - 2 {sin}^{2} \alpha  {cos}^{2} \alpha ) - 2(1 - 3 {sin}^{2} \alpha  {cos}^{2} \alpha )

\rm \:  =  \: 3 - 6{sin}^{2} \alpha  {cos}^{2} \alpha  - 2  + 6 {sin}^{2} \alpha  {cos}^{2} \alpha

\rm \:  =  \: 1

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

Sign of Trigonometric ratios in Quadrants

sin (90°-θ)  =  cos θ

cos (90°-θ)  =  sin θ

tan (90°-θ)  =  cot θ

csc (90°-θ)  =  sec θ

sec (90°-θ)  =  csc θ

cot (90°-θ)  =  tan θ

sin (90°+θ)  =  cos θ

cos (90°+θ)  =  -sin θ

tan (90°+θ)  =  -cot θ

csc (90°+θ)  =  sec θ

sec (90°+θ)  =  -csc θ

cot (90°+θ)  =  -tan θ

sin (180°-θ)  =  sin θ

cos (180°-θ)  =  -cos θ

tan (180°-θ)  =  -tan θ

csc (180°-θ)  =  csc θ

sec (180°-θ)  =  -sec θ

cot (180°-θ)  =  -cot θ

sin (180°+θ)  =  -sin θ

cos (180°+θ)  =  -cos θ

tan (180°+θ)  =  tan θ

csc (180°+θ)  =  -csc θ

sec (180°+θ)  =  -sec θ

cot (180°+θ)  =  cot θ

sin (270°-θ)  =  -cos θ

cos (270°-θ)  =  -sin θ

tan (270°-θ)  =  cot θ

csc (270°-θ)  =  -sec θ

sec (270°-θ)  =  -csc θ

cot (270°-θ)  =  tan θ

sin (270°+θ)  =  -cos θ

cos (270°+θ)  =  sin θ

tan (270°+θ)  =  -cot θ

csc (270°+θ)  =  -sec θ

sec (270°+θ)  =  cos θ

cot (270°+θ)  =  -tan θ

Similar questions