Math, asked by syeda14348, 4 months ago


3 \cos ^{2} ( \theta )  -  \cos( \theta ) =  \frac{1}{4}

Answers

Answered by Aryan0123
4

Here,

We need to find the value of θ.

\sf{3cos^{2} \theta - cos \theta = \dfrac{1}{4}}\\\\\\\leadsto \sf{cos \theta (3cos \theta - 1) = \dfrac{1}{4}}\\\\\\\longrightarrow \: \sf{cos \theta = \dfrac{1}{4(3cos \theta - 1)}}\\\\\\\Rightarrow \sf{cos \theta = \dfrac{1}{12cos \theta - 1}}

\\\\\rm{On \: cross \: multiplication,}\\\\

\sf{cos \theta(12cos \theta-4)=1}\\

\Rightarrow \sf{12 cos^{2} \theta - 4cos \theta=1}\\

\Rightarrow \: \sf{12 cos^{2}\theta - 4cos \theta - 1=0}\\\\

\rm{Let \: cos \theta = x}

\\\\\sf{12x^{2} - 4x - 1=0}\\\\\Rightarrow \sf{12x^{2} -6x+2x-1=0}\\\\\Rightarrow \sf{6x(2x -1)+1(2x-1)=0}\\\\\Rightarrow \sf{(6x + 1) (2x -1)=0}

\\\\\sf{If \:6x + 1 = 0,}\\\\\rightarrow \sf{x = \dfrac{-1}{6} = cos \theta}\\\\\sf{But, cos \theta \: cannot \: be\: negative}\\\\

\sf{So\: 2x - 1=0}\\\\\Rightarrow \bf{x = \dfrac{1}{2} = cos \theta}\\\\

\Rightarrow \sf{\theta = cos^{-1}\bigg(\dfrac{1}{2}\bigg)}\\\\\\\therefore \boxed{\bf{\theta = 60^{\circ}}}

Similar questions