Math, asked by Naikalu, 9 months ago


3 \div( x + 1 ) - 1 \div 2 = 2 \div (3x + 1)

Answers

Answered by amankumaraman11
0

 \huge \tt \frac{3}{x + 1}  -  \frac{1}{2}  =  \frac{2}{3x + 1}  \\ \\   \\ \bf  =  >  \frac{6 - (x + 1)}{2(x + 1)}  =  \frac{2}{3x + 1}  \\  \\  \bf =  >  \frac{6 - x - 1}{2x + 2}  =  \frac{2}{3x + 1}  \\  \\ \bf  =  >  \frac{5 - x}{2x + 2}  =  \frac{2}{3x + 1}  \\  \\ \bf  =  > 15x + 5 -  {3x}^{2}  - x = 4x + 4 \\  \bf =  >  { - 3x}^{2}  + 5 + 14x - 4x - 4 = 0 \\ \bf  =  > { - 3x}^{2}  + 10x + 1 = 0

Now,

 \bf{D =  {b}^{2}  - 4ac} \\  =  >  {(10)}^{2}  - 2( - 3)(1) \\  =  > 100 + 6  \:  \:  \:  \: = 106

Then,

  \bf\large{x =  \frac{ - b \pm  \sqrt{D} }{2a} }\\  \\ \sf{ x =  >  \frac{ - 10 \pm  \sqrt{106} }{2( - 3)}}  \\  \\  \sf{x =  >  \frac{ - 10  +  \sqrt{106} }{ - 6}  \:  \:  \:  \:  \: or \:  \:  \:  \frac{ - 10 -  \sqrt{106} }{ - 6} } \\  \\ \boxed{ \boxed{ x =  >  \frak{ \red{ \frac{10 -  \sqrt{106} }{6}}  \:  \:  \:  \:  \:  \: { \sf{or}} \:  \:  \:  \:  \red{ \frac{10 +  \sqrt{106} }{6}} }}}

Similar questions