Math, asked by adi12633, 1 year ago


(3 \sqrt{2 } - 2 \div 3 \sqrt{2}  + 2 )+ (3 \sqrt{2}  + 2 \div 3 \sqrt{2}  - 2)
what is the answer

Answers

Answered by abhi569
7
 \dfrac{3 \sqrt{2} - 2 }{ 3\sqrt{2} + 2} + \dfrac{3 \sqrt{2} + 2}{3 \sqrt{2} - 2 }



 \dfrac{(3\sqrt{2}-2)(3\sqrt{2}-2) + (3\sqrt{2}+2)(3\sqrt{2}+2}{(3\sqrt{2}+2)(3\sqrt{2}-2)}



\dfrac{(3\sqrt{2}-2)^{2}+(3\sqrt{2}+2)^{2}}{(3\sqrt{2})^{2}-(2)^{2}}



<br />\dfrac{(3\sqrt{2})^{2}+(2)^{2}-12\sqrt{2} + (3\sqrt{2})^{2}+(2)^{2} + 12\sqrt{2}}{18-4}



<br />\dfrac{18+4+18+4}{16}

\dfrac{44}{14}


22 / 7

π or 3.14
Answered by Anonymous
4

 \frac{3 \sqrt{2}  - 2}{3 \sqrt{2} + 2 }  +  \frac{3 \sqrt{2}  + 2}{3 \sqrt{2} - 2 }  \\  =  \frac{ {(3 \sqrt{2}  - 2)}^{2}  +  {(3 \sqrt{2} + 2) }^{2} }{(3 \sqrt{2} + 2)(3 \sqrt{2}  - 2) }  \\  = \frac{18 + 4 - 12 \sqrt{2}  + 18 + 4 + 12 \sqrt{2} }{ {(3 \sqrt{2}) }^{2} -  {2}^{2}  }  \\  =  \frac{22 + 22}{18 - 4}  \\  =  \frac{44}{14}  \\  =  \frac{22}{7}  \\  = 3.142857142857142
Similar questions