Math, asked by goperaj664, 10 months ago


3 +  \sqrt{5}   \div 3 - 2 \sqrt{5}
a-b√5​

Answers

Answered by mohitgurjar59
2

Answer:

\huge\mathcal{\purple{answer = \frac{7+ \sqrt[3]{5}}{2}}}

Step-by-step explanation:

By Rationalizing the denominator ;

</u><u>=</u><u> \frac{3 +  \sqrt{5} }{3 -  \sqrt{5} }

 </u><u>=</u><u>\frac{3 +  \sqrt{5} }{3 -  \sqrt{5} }  =  \frac{3 +  \sqrt{5} }{3 +  \sqrt{5} }

by \: using \: identity

 {a}^{2}  -  {b}^{2}  = (a - b)(a + b)

</u><u>=</u><u> \frac{(3 +  \sqrt{5)</u><u>}</u><u>{</u><u>(3 +  \sqrt{5)} } }{ {3}^{2} -  { \sqrt{5} }^{2}  }

by \: using \: identity

 {(a + b</u><u>)</u><u>}^{2}  =  {a}^{2}  +  {b}^{2}  + 2(a)(b)

 </u><u>=</u><u>\frac{ {3}^{2} +  { \sqrt{5} }^{2} </u><u> + 2(3)( \sqrt{5)}  }{9 - 5}

 </u><u>=</u><u>\frac{9 + 5 +  \sqrt[6]{5} }{4}

</u><u>=</u><u> \frac{14 + \sqrt[6]{5} }{4}

By taking 2 common,

 =  \frac{7 +  \sqrt[3]{5} }{2}

 &lt;marquee&gt; { hope it help you}

Similar questions