Math, asked by subhamkumar966, 10 months ago


3 \sqrt{5 } x {}^{2}  + 25x - 10 \sqrt{5} = 0 \:  \: solve \: the \: following \: quadratic \: equation \: by \: factorizatin

Answers

Answered by amitkumar44481
4

Correct Question :

 \dagger\: \tt 3 \sqrt{5 } x {}^{2} + 25x + 10 \sqrt{5} = 0 \: \: Solve \: the \: following \: quadratic \: equation \: by \: factorization method.

AnsWer :

• x = -10/ 3√5 and x = -√5.

Solution :

We have Quadratic equation,

 \tt\longmapsto 3 \sqrt{5}  {x}^{2}  + 25x + 10 \sqrt{5}  = 0.

\tt\longmapsto 3 \sqrt{5}  {x}^{2}  + 15x + 10x + 10 \sqrt{5}  = 0.

\tt\longmapsto 3 \sqrt{5} x(x +  \sqrt{5} ) + 10(x +  \sqrt{5} ) = 0.

\tt\longmapsto( 3 \sqrt{5} x + 10)(x + 15) = 0.

Either,

\tt\mapsto 3 \sqrt{5} x + 10 = 0.

\tt \mapsto x =  \frac{ - 10}{3 \sqrt{5} }

Or,

\tt\mapsto x +  \sqrt{5}  = 0.

\tt \mapsto x = -   \sqrt{5} .

\rule{180}3

Let try to Solve by Quadratic Formula,

We have,

  • a = 3√5.
  • b = 25.
  • c = 10√5.

We have Quadratic Formula,

 \tt\dagger \: \:  \:  x =  \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}

Putting given value, We get.

\tt \longmapsto x =  \frac{ - 25 \pm \sqrt{ {(25)}^{2} - 4 \times 3 \sqrt{5}   \times 10 \sqrt{5} } }{6 \sqrt{5} }

\tt\longmapsto x =  \frac{ - 25 \pm \sqrt{625 - 600} }{6 \sqrt{5} }

\tt\longmapsto x =  \frac{ - 25 \pm \sqrt{25} }{6 \sqrt{5} }

\tt\longmapsto x =  \frac{ - 25 \pm5}{6 \sqrt{5} }

Either,

\tt \mapsto x =  \frac{ - 25 - 5}{6 \sqrt{5} }

\tt\mapsto  \frac{ - 30}{6 \sqrt{5} }

\tt\mapsto  \frac{ - 5}{ \sqrt{5} }

Rationalizing,the denominator.

\tt\mapsto  \frac{ - 5}{ \sqrt{5} }  \times  \frac{ \sqrt{5} }{ \sqrt{5} }

\tt \mapsto  -  \sqrt{5} .

\rule{50}1

Or,

\tt\mapsto  \frac{ - 25 + 5}{6 \sqrt{5} }

\tt\mapsto  \frac{ - 20}{6 \sqrt{5} }

\tt\mapsto x =  \frac{ - 10}{3 \sqrt{5} }

Therefore, the value value of x be -10/3√5 and -√5

Similar questions