Math, asked by lmperfect, 2 months ago


(3 +  \sqrt{7})  \div( 3 -  \sqrt{7})  = a + b \sqrt{7}
find the value of A and B​

Answers

Answered by Suwathiangel
2

Please mark me as brainliest

Attachments:
Answered by Anonymous
11

Given : -

\dfrac{3+\sqrt{7} }{3-\sqrt{7} } = a+b \sqrt{7}

To find : -

Value of a, b

Solution :-

We shall do rationalizing the denominator  for rationalizing the denominator we need to multiply and divide with its rationalizing factor

Rationalizing factor for

3-\sqrt{7}  \: is \:     3+\sqrt{7} So multiply and divide with this

\dfrac{3+\sqrt{7} }{3-\sqrt{7} }\; \times \dfrac{3+\sqrt{7} }{3+\sqrt{7} }

\dfrac{(3+\sqrt{7} )^{2} }{(3+\sqrt{7})(3-\sqrt{7)}  }

Numerator is in form of (a+b)² and denominator is in form of (a+b)(a-b)

(a+b)^2 = a^2 + b^2 +2ab \\(a+b)(a-b) = a^2 - b^2

Applying these two formulae

\dfrac{9+7+2\times 3\sqrt{7}  }{(3)^2-(\sqrt{7})^2 }

\dfrac{16+6\sqrt{7} }{9-7}

\dfrac{16+6\sqrt{7} }{2}

\dfrac{16}{2} +\dfrac{6\sqrt{7} }{2} = a+b\sqrt{7}

8+3\sqrt{7} = a+b\sqrt{7}

by comparision a= 8 b=3

so the value of a, b are 8,3

Know more some algebraic identities:-

(a+ b)² = a² + b² + 2ab

( a - b )² = a² + b² - 2ab

( a + b )² + ( a - b)² = 2a² + 2b²

( a + b )² - ( a - b)² = 4ab

( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca

a² + b² = ( a + b)² - 2ab

(a + b )³ = a³ + b³ + 3ab ( a + b)

( a - b)³ = a³ - b³ - 3ab ( a - b)

If a + b + c = 0 then a³ + b³ + c³ = 3abc

Similar questions