Science, asked by thapaavinitika6765, 7 months ago

3\tan ^3\left(A\right)-\tan \left(A\right)=0,\:A\in \left[0,\:360\right]

solve it !!!!!!!!!!!!!!!!!!!!!

Answers

Answered by Anonymous
278

\mathrm{Let:\:}\tan \left(A\right)=u

3u^3-u=0\quad :\quad u=0,\:u=-\frac{\sqrt{3}}{3},\:u=\frac{\sqrt{3}}{3}

\tan \left(A\right)=0,\:\tan \left(A\right)=-\frac{\sqrt{3}}{3},\:\tan \left(A\right)=\frac{\sqrt{3}}{3}

\tan \left(A\right)=0\quad :\quad A=\pi n\tan \left(A\right)=-\frac{\sqrt{3}}{3}\quad :\quad A=\frac{5\pi }{6}+\pi n

A=\pi n,\:A=\frac{5\pi }{6}+\pi n,\:A=\frac{\pi }{6}+\pi n

Answered by Anonymous
321

♣ Qᴜᴇꜱᴛɪᴏɴ :

\bf{3\tan ^3\left(A\right)-\tan \left(A\right)=0,\:A\in \:\left[0,\:360\right]}

♣ ᴀɴꜱᴡᴇʀ :

\bf{Let:\:}\tan \left(A\right)=u}

\bf{3u^3-u=0}

\bf{3u^3-u=0\quad :\quad u=0,\:u=-\dfrac{\sqrt{3}}{3},\:u=\dfrac{\sqrt{3}}{3}}

\bf{Substitute\:back\:u=\tan \left(A\right)}

\bf{\tan \left(A\right)=0,\:\tan \left(A\right)=-\dfrac{\sqrt{3}}{3},\:\tan \left(A\right)=\dfrac{\sqrt{3}}{3}}

\rule{250}{1}

\bf{\tan \left(A\right)=0,\:\tan \left(A\right)=-\dfrac{\sqrt{3}}{3},\:\tan \left(A\right)=\dfrac{\sqrt{3}}{3}}

\bf{tan \left(A\right)=-\dfrac{\sqrt{3}}{3},\:0\le \:A\le \:360^{\circ \:}\quad :\quad A=150^{\circ \:},\:A=330^{\circ \:}}

\bf{\tan \left(A\right)=\frac{\sqrt{3}}{3},\:0\le \:A\le \:360^{\circ \:}\quad :\quad A=30^{\circ \:},\:A=210^{\circ \:}}

\rule{250}{1}

\bf{Combine\:all\:the\:solutions}

\boxed{\bf{A=0,\:A=180^{\circ \:},\:A=360^{\circ \:},\:A=150^{\circ \:},\:A=330^{\circ \:},\:A=30^{\circ \:},\:A=210^{\circ \:}}}

Similar questions