Science, asked by thapaavinitika6765, 8 months ago

3\tan ^3\left(A\right)-\tan \left(A\right)=0,\:A\in \left[0,\:360\right]

solve @RockstarPratheek

Answers

Answered by Anonymous
1

\mathrm{Let:\:}\tan \left(A\right)=u

3u^3-u=0

3u^3-u=0\quad :\quad u=0,\:u=-\frac{\sqrt{3}}{3},\:u=\frac{\sqrt{3}}{3}

\tan \left(A\right)=0,\:\tan \left(A\right)=-\frac{\sqrt{3}}{3},\:\tan \left(A\right)=\frac{\sqrt{3}}{3}

\tan \left(A\right)=0,\:\tan \left(A\right)=-\frac{\sqrt{3}}{3},\:\tan \left(A\right)=\frac{\sqrt{3}}{3}

\tan \left(A\right)=-\frac{\sqrt{3}}{3},\:0\le \:A\le \:360^{\circ \:}\quad :\quad A=150^{\circ \:},\:A=330^{\circ \:}

\tan \left(A\right)=\frac{\sqrt{3}}{3},\:0\le \:A\le \:360^{\circ \:}\quad :\quad A=30^{\circ \:},\:A=210^{\circ \:}

A=0,\:A=180^{\circ \:},\:A=360^{\circ \:},\:A=150^{\circ \:},\:A=330^{\circ \:},\:A=30^{\circ \:},\:A=210^{\circ \:}

Answered by MysteriousAryan
1

Explanation:

refer \: to \: the \: attachment

Attachments:
Similar questions