Math, asked by Rugved272727, 10 months ago


3 {x}^{2}  - 2 \sqrt{6}x + 2  = 0   \:  \: solve \: by \: factorisation

Answers

Answered by rachita07
9

Answer:

3 {x}^{2}  - 2 \sqrt{6} x + 2 = 03 {x}^{2}  -  \sqrt{6} x -  \sqrt{6} x + 2 = 0 \sqrt{3} x( \sqrt{3} x -  \sqrt{2} ) -  \sqrt{2} ( \sqrt{3} x -  \sqrt{2} ) = 0( \sqrt{3} x -  \sqrt{2} )( \sqrt{3} x -  \sqrt{2} ) = 0x = \sqrt{ \frac{2}{3} }

Answered by Anonymous
0

\boxed{\huge{\red{Answer}}}

_________________________

→ 3x² - √6x - √6x + 2 = 0

→ 3x² - √2×3 x - √2×3 x + 2 = 0

→ 3x² - (√2)(√3)x - (√2)(√3)x + 2 = 0

→ √3x ( √3x - √2 ) -√2 ( √3x - √2 ) = 0

→ (√3x - √2 ) ( √3x - √2 ) = 0

→ x = √2/3 and x = √2/3

_________________________

Similar questions