Math, asked by Aashwik08, 5 months ago


3 {x}^{2} - x - 4

Answers

Answered by AlluringNightingale
4

Question :

Find the zeros of the given quadratic polynomial ; 3x² - x - 4 .

Answer :

x = 4/3 , -1

Solution :

Here ,

The given quadratic polynomial is ;

3x² - x - 4

In order to find the zeros of the given quadratic polynomial , let's equate it to zero .

Thus ,

=> 3x² - x - 4 = 0

=> 3x² - 4x + 3x - 4 = 0

=> x(3x - 4) + (3x - 4) = 0

=> (3x - 4)(x + 1) = 0

=> Either (3x - 4) = 0 or (x + 1) = 0

• If 3x - 4 = 0 , then x = 4/3

• If x + 1 = 0 , then x = -1

Hence ,

x = 4/3 , -1

Answered by Anonymous
1

Answer:

\huge\rm{Question:–}

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the co-efficients.

\huge\rm{\underline{\underline{Solution:–}}}

\rm \: ax²+bx+c \\ \rm→a=3;b=-1;c=-4 \\ \rm→Sum \: of \: coefficient= \frac{-b}{a}  =  \frac{ - ( - 1)}{3}  =  \frac{1}{3}

\rm Product =  \frac{c}{a }  =  \frac{-4}{3}

\rm \: → 3x²-x-4 \\ \rm→3x²+3x-4x-4 \\ \rm→3x(x+1)-4(x+1) \\ \rm→(x+1)(3x-4) \\ \rm→x=-1 \: x= \frac{4}{3}

\rm \: Sum \: of \: zeroes= \frac{-1}{1}  +  \frac{4}{3}  =  \frac{-3+4}{3}  =  \frac{1}{3}

\rm \: Product \: of \: zeroes=(-1) ( \frac{4}{3} )= \frac{-4}{3}

----» The relationship between zeroes and co-efficients. verified and the values are matching.

Similar questions