Math, asked by Ayushibora, 2 months ago


3 {x}^{3}  - 2 \sqrt{6x}  + 2 = 0

Answers

Answered by geetalibora19
1

Answer :

 \sqrt{ \frac{2}{3} }  \:  \:  \:  \:  \sqrt{ \frac{2}{3} }

Step-by-step explanation:

 {3x}^{2}  - 2 \sqrt{6x}  + 2 = 0

 =  >  {3x}^{2}  -  \sqrt{6x}  -  \sqrt{6x}  + 2 = 0

 =  >  \sqrt{3x} ( \sqrt{3x}  -  \sqrt{2} ) -  \sqrt{2} ( \sqrt{3x}  -  \sqrt{2) = 0}

 =  > ( \sqrt{3x}  -  \sqrt{2} ) \:  \: ( \sqrt{3x -  \sqrt{2} } ) = 0

 =  >  \sqrt{3x}  -  \sqrt{2}  = 0 \:  \:  \sqrt{3x}  -  \sqrt{2}  = 0

 =  > x =    \frac{ \sqrt{2} }{ \sqrt{3} }  \:  \:  \:  \:  \:  \:  \:  \: x =  \frac{ \sqrt{2} }{ \sqrt{3} }

Similar questions