Math, asked by mahaward430, 1 year ago


34x ^{2}  + 121x + 242 = 0

Answers

Answered by hereisayushh02
0

Answer:

x =  \frac{ - b \binom{ + }{ - } \sqrt{ {b}^{2} - 4ac }  }{2a}

here a = 34 , b = 121 , C = 242

 \frac{ - 121 \binom{ + }{ - }  \sqrt{ {121}^{2}  - 4 \times 34 \times 242} }{2 \times 34}

 \frac{ - 121 \binom{ + }{ - }  \sqrt{ - 18271} }{68}

  = \frac{ - 121 \binom{ + }{ - }135.17 }{68} (approximately)

hope \: it \:helps..

THNKS!!

Answered by BrainlyConqueror0901
3

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore x =  \frac{ - 121 \pm \sqrt{ - 18271} }{ 68}}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

• In the given question information given about a quadratic eqn.

• We have to find the values of x.

 \underline \bold{Given : } \\   \implies 34 {x}^{2}  + 121x + 242 = 0 \\  \\  \underline \bold{To \: Find : } \\  \implies x = ?

• According to given question :

 \bold{Using \: Quadratic \: formula : } \\  \implies  {34x}^{2} + 121x + 242 = 0 \\   \\   \implies D =  {b}^{2}   - 4ac \\  \\  \implies D =  ({121})^{2}  - 4 \times 34 \times 242 \\   \\  \implies D= 14641 - 32912 \\  \\  \bold{\implies D =  - 18271} \\  \\  \implies x =  \frac{ - b \pm \sqrt{D} }{2a}  \\  \\  \implies x =  \frac{ - 121 \pm \sqrt{ - 18271} }{2 \times 34}  \\  \\   \bold{\implies x =  \frac{ - 121 \pm \sqrt{ - 18271} }{ 68} }

Similar questions