Math, asked by flowerstail, 2 months ago


36 \frac{7}{9}  - (12 \frac{4}{5}  + 11 \frac{1}{3})
Solve-​

Answers

Answered by vivaansharma15
0

First, we write the augmented matrix.

1

1

1

2

3

1

3

2

9

|

8

2

9

Next, we perform row operations to obtain row-echelon form.

2

R

1

+

R

2

=

R

2

1

1

1

0

5

3

3

2

9

|

8

18

9

3

R

1

+

R

3

=

R

3

1

1

1

0

5

3

0

1

12

|

8

18

15

The easiest way to obtain a 1 in row 2 of column 1 is to interchange \displaystyle {R}_{2}R

2

and \displaystyle {R}_{3}R

3

.

Interchange

R

2

and

R

3

1

1

1

8

0

1

12

15

0

5

3

18

Then

5

R

2

+

R

3

=

R

3

1

1

1

0

1

12

0

0

57

|

8

15

57

1

57

R

3

=

R

3

1

1

1

0

1

12

0

0

1

|

8

15

1

The last matrix represents the equivalent system.

x

y

+

z

=

8

y

12

z

=

15

z

=

1

Using back-substitution, we obtain the solution as \displaystyle \left(4,-3,1\right)(4,−3,1).

Answered by aniketmehta763
1

Step-by-step explanation:

a)

30

×

1

10

−30 ×

10

1

= -3

(b)

50

×

1

5

50×

5

−1

= -10

(c)

36

×

1

9

−36 ×

9

−1

= 4

(d)

(

49

)

×

1

49

(−49)×

49

1

= -1

(e)

13

×

[

(

2

)

+

1

]

13×[(−2) + 1]

13

×

1

1

13×

1

−1

= -13

(f)

0

×

1

12

12

−1

= 0

(g)

(

31

)

÷

[

(

30

)

1

]

(−31)÷[(−30)−1]

(

31

)

÷

(

31

)

(−31)÷(−31)

31

×

1

31

−31 ×

31

−1

= 1

(h)

[

(

36

)

÷

12

]

÷

3

[(−36)÷12]÷3

[

(

36

)

×

1

12

]

×

1

3

[(−36)×

12

1

3

1

36

12

×

1

3

12

−36

×

3

1

3

×

1

3

−3×

3

1

= 1

(i)

[

6

+

5

]

÷

[

2

+

1

]

[−6+5]÷[−2+1]

1

×

1

1

−1×

1

−1

= 1

Similar questions