Math, asked by Itzheaven, 2 months ago


 \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\

Attachments:

Answers

Answered by sahil18005
33

Answer:

u r answer for the question!!!

Attachments:
Answered by HypersomniacAmbivert
307

Answer:

\huge\bold{QUESTION}

if \: sinθ =  \frac{20}{29 }  \: then \: find \: cosθ \:

\huge\bold{ANSWER}

Solution:-

We have sin²θ+cos²θ= 1

=>

 =  > ( { \dfrac{20}{29}) }^{2}  +  {cos}^{2} θ = 1 \\  \\  =  >  \frac{400}{841}  +  {cos}^{2} θ = 1 \\  \\  =  >  {cos}^{2} θ = 1 -  \frac{400}{841}  \\  \\  =  >  {cos}^{2} θ =  \frac{841 - 400}{841}  \\  \\  =  >  {cos}^{2} θ =  \frac{441}{841} \\  \\  =  >  {cos}  θ =  \sqrt{ \frac{441}{841} }  =  \frac{21}{29}  \\  \\  =  > cosθ =  \frac{21}{29}

EXPLANATION

Here The Identity: Sin²θ+Cos²θ=1 is used

We are Given the value of sinθ and asked for cosθ

STEPS

Place the value of sinθ from given question in the identity Sin²θ+Cos²θ=1

Then find the value of cos²θ by solving LHS and RHS

{cos}^{2} θ= \dfrac{441}{841}

Take square root on both side and hence we would find the value of

cosθ =  \dfrac{21}{29}

ADDITIONAL INFORMATION

  1. Identities

  • Sin²θ+Cos²θ=1

  • Sec²θ-Tan²θ=1

  • Cosec²θ-Cot²θ=1

  • Sin(90-θ)=cosθ

  • tan(90-θ)=cotθ

  • sec(90-θ)=cosecθ

  • sinθ = \frac{1}{cosecθ}
  • cosθ =  \frac{1}{sec θ }

  • tanθ =  \frac{1}{cot}θ

  • sin(α+β)=sin(α)cos(β)+cos(α)sin(β)

  • sin(α–β)=sin(α)cos(β)–cos(α)sin(β)

  • cos+β)=cos(α)cos(β)–sin(α)sin(β)

  • cos(α–β)=cos(α)cos(β)+sin(α)sin(β)

  • sin(α)cos(β)=½(sin(α+β)+sin(α−β))

  • cos(α)cos(β)=½(cos(α−β)+cos(α+β))
Similar questions