Math, asked by rays6881, 11 months ago


 3x {}^{2}  + 2 \sqrt{6} x + 2 = 0


Answers

Answered by Anonymous
0

Answer:

 \mathtt\red{x =  \frac{ - 2}{3} }

Step-by-step explanation:

 \tt({3x}^{2}  + 2 \sqrt{6}x + 2 = 0 \\  {3x}^{2}  +  \sqrt{6x}  +  \sqrt{6x}  + 2 = 0 \\  \sqrt{3x} ( \sqrt{3x} +  \sqrt{2})  + \sqrt{2}( \sqrt{3x}  +  \sqrt{2}  ) \\  (\sqrt{3x}  +  \sqrt{2} )( \sqrt{3x}  +  \sqrt{2} ) \\  {(\sqrt{3 x}  +  \sqrt{2} )}^{2}  \\ ( \sqrt{3x}  +  \sqrt{2} ) = 0 \\ ( \sqrt{3x}  +  \sqrt{2} )  = 0 \\  \sqrt{3x}  =  -  \sqrt{2}  \\    3x =  - 2 \\ \pink{  x =  \frac{ - 2}{3} }

Similar questions