Math, asked by 919890706944, 1 month ago


3x {} {}^{ 2}  - 2 \sqrt{6} x + 2 = 0
answer step by step




Answers

Answered by tpalak105
21

Step-by-step explanation:

3x² - 26x + 2 = 0

We will factorise

Using splitting midterm theorem

3x² - 6x - 6x + 2 = 0

3x² - 2 × 3x - 2 × 3x + 2 = 0

3x² - ( 2 ) ( 3 )x - (2)(3)x + 2 = 0

3x² ( 3x - 2 ) - 2 ( 3x - 2 ) = 0

( 3x - 2 ) ( 3x - 2 ) = 0

3x - 2 = 0

3x = 2

x = 2 / 3

3x - 2 = 0

 \sqrt{ \frac{2}{3} }

3x = 2

x = 2 / 3

Hence x =

 \sqrt{ \frac{2}{3} }

hope \: it \: helps \: you

Answered by shwetasachan6936
0

Step-by-step explanation:

3x² - 2√6x + 2 = 0

We will factorise

Using splitting midterm theorem

3x² - √6x - √6x + 2 = 0

3x² - √2 × 3x - √ 2 × 3x + 2 = 0

3x² - ( √2 ) ( √3 )x - (√2)(√3)x + 2 = 0

3x² ( √3x - √2 ) - √2 ( √3x - √2 ) = 0

( √ 3x - √2 ) ( √3x - √ 2 ) = 0

√ 3x - √2 = 0

√3x = √2

x = √2 / √3

√3x - √2 = 0

\sqrt{ \frac{2}{3} }

3

2

√3x = √2

x = √2 / √ 3

Hence x =

\sqrt{ \frac{2}{3} }

3

2

Similar questions